These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26426705)

  • 1. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.
    Churnside AB; Tung RC; Killgore JP
    Langmuir; 2015 Oct; 31(40):11143-9. PubMed ID: 26426705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
    Kocun M; Labuda A; Gannepalli A; Proksch R
    Rev Sci Instrum; 2015 Aug; 86(8):083706. PubMed ID: 26329202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic corrections to contact resonance atomic force microscopy measurements of viscoelastic loss tangent.
    Tung RC; Killgore JP; Hurley DC
    Rev Sci Instrum; 2013 Jul; 84(7):073703. PubMed ID: 23902072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic property mapping with contact resonance force microscopy.
    Killgore JP; Yablon DG; Tsou AH; Gannepalli A; Yuya PA; Turner JA; Proksch R; Hurley DC
    Langmuir; 2011 Dec; 27(23):13983-7. PubMed ID: 22054300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncontact Viscoelastic Measurement of Polymer Thin Films in a Liquid Medium Using Long-Needle Atomic Force Microscopy.
    Guan D; Barraud C; Charlaix E; Tong P
    Langmuir; 2017 Feb; 33(6):1385-1390. PubMed ID: 28094528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy.
    Piacenti AR; Adam C; Hawkins N; Wagner R; Seifert J; Taniguchi Y; Proksch R; Contera S
    Macromolecules; 2024 Feb; 57(3):1118-1127. PubMed ID: 38370912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations.
    Farokh Payam A
    Ultramicroscopy; 2013 Dec; 135():84-8. PubMed ID: 23942312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing nano-scale viscoelastic response in air and in liquid with dynamic atomic force microscopy.
    Crippa F; Thorén PA; Forchheimer D; Borgani R; Rothen-Rutishauser B; Petri-Fink A; Haviland DB
    Soft Matter; 2018 May; 14(19):3998-4006. PubMed ID: 29740651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation.
    Campbell SE; Ferguson VL; Hurley DC
    Acta Biomater; 2012 Dec; 8(12):4389-96. PubMed ID: 22877818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films.
    Scott WW; Bhushan B
    Ultramicroscopy; 2003; 97(1-4):151-69. PubMed ID: 12801668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid.
    Nishida S; Kobayashi D; Sakurada T; Nakazawa T; Hoshi Y; Kawakatsu H
    Rev Sci Instrum; 2008 Dec; 79(12):123703. PubMed ID: 19123565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle Adsorption Using a Quartz Crystal Microbalance with Dissipation by Applying a Kelvin-Voigt-Based Viscoelastic Model and the Gauss-Newton Method.
    Furikado I; Forsman J; Nylander T
    Anal Chem; 2023 Oct; 95(41):15286-15292. PubMed ID: 37782503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-palpation AFM and its quantitative mechanical property mapping.
    Nakajima K; Ito M; Wang D; Liu H; Nguyen HK; Liang X; Kumagai A; Fujinami S
    Microscopy (Oxf); 2014 Jun; 63(3):193-208. PubMed ID: 24771870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid contact resonance AFM: analytical models, experiments, and limitations.
    Parlak Z; Tu Q; Zauscher S
    Nanotechnology; 2014 Nov; 25(44):445703. PubMed ID: 25302928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the mechanical properties of retinal tissue using contact angle measurements of a spreading droplet.
    Grant CA; Twigg PC; Savage MD; Woon WH; Wilson M; Greig D
    Langmuir; 2013 Apr; 29(16):5080-4. PubMed ID: 23534866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.