These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26426705)

  • 21. Theory of Single-Impact Atomic Force Spectroscopy in liquids with material contrast.
    López-Guerra EA; Banfi F; Solares SD; Ferrini G
    Sci Rep; 2018 May; 8(1):7534. PubMed ID: 29760518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid.
    Nishida S; Kobayashi D; Sakurada T; Nakazawa T; Hoshi Y; Kawakatsu H
    Rev Sci Instrum; 2008 Dec; 79(12):123703. PubMed ID: 19123565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation.
    Campbell SE; Ferguson VL; Hurley DC
    Acta Biomater; 2012 Dec; 8(12):4389-96. PubMed ID: 22877818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced sensitivity of nanoscale subsurface imaging by photothermal excitation in atomic force microscopy.
    Yip K; Cui T; Filleter T
    Rev Sci Instrum; 2020 Jun; 91(6):063703. PubMed ID: 32611036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques.
    Uluutku B; López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2021; 12():1063-1077. PubMed ID: 34631339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validity of point-mass model in off-resonance dynamic atomic force microscopy.
    Rajput SS; Deopa SPS; Ajith VJ; Kamerkar SC; Patil S
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34144547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.
    Solares SD
    Beilstein J Nanotechnol; 2016; 7():554-71. PubMed ID: 27335746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nano-scale viscoelasticity using atomic force microscopy in liquid environment.
    Rajput SS; Deopa SPS; Yadav J; Ahlawat V; Talele S; Patil S
    Nanotechnology; 2021 Feb; 32(8):085103. PubMed ID: 33120375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Visualization of the Nanomechanical Young's Modulus of Soft Materials by Atomic Force Microscopy.
    Kim S; Lee Y; Lee M; An S; Cho SJ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid contact resonance AFM: analytical models, experiments, and limitations.
    Parlak Z; Tu Q; Zauscher S
    Nanotechnology; 2014 Nov; 25(44):445703. PubMed ID: 25302928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy.
    Wang H; González-Fialkowski JM; Li W; Xie Q; Yu Y; Xu XG
    Anal Chem; 2021 Feb; 93(7):3567-3575. PubMed ID: 33573375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic Force Microscopy Cantilever-Based Nanoindentation: Mechanical Property Measurements at the Nanoscale in Air and Fluid.
    Enrriques AE; Howard S; Timsina R; Khadka NK; Hoover AN; Ray AE; Ding L; Onwumelu C; Nordeng S; Mainali L; Uzer G; Davis PH
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36533832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifunctional cantilevers for simultaneous enhancement of contact resonance and harmonic atomic force microscopy.
    Wang W; Zhang K; Zhang W; Hou Y; Chen Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33784663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films.
    Scott WW; Bhushan B
    Ultramicroscopy; 2003; 97(1-4):151-69. PubMed ID: 12801668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-palpation AFM and its quantitative mechanical property mapping.
    Nakajima K; Ito M; Wang D; Liu H; Nguyen HK; Liang X; Kumagai A; Fujinami S
    Microscopy (Oxf); 2014 Jun; 63(3):193-208. PubMed ID: 24771870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.