These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26426932)

  • 1. Short-time dynamics in dispersions with competing short-range attraction and long-range repulsion.
    Riest J; Nägele G
    Soft Matter; 2015 Dec; 11(48):9273-80. PubMed ID: 26426932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory.
    Riest J; Nägele G; Liu Y; Wagner NJ; Godfrin PD
    J Chem Phys; 2018 Feb; 148(6):065101. PubMed ID: 29448794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics.
    Liu Y; Xi Y
    Curr Opin Colloid Interface Sci; 2019 Feb; 39():. PubMed ID: 34140838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation.
    Das S; Riest J; Winkler RG; Gompper G; Dhont JKG; Nägele G
    Soft Matter; 2017 Dec; 14(1):92-103. PubMed ID: 29199754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles.
    Heinen M; Banchio AJ; Nägele G
    J Chem Phys; 2011 Oct; 135(15):154504. PubMed ID: 22029321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering in Mixtures of SALR Particles and Hard Spheres with Cross Attraction.
    Munaò G; Prestipino S; Bomont JM; Costa D
    J Phys Chem B; 2022 Mar; 126(9):2027-2039. PubMed ID: 35224968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic properties of different liquid states in systems with competing interactions studied with lysozyme solutions.
    Godfrin PD; Falus P; Porcar L; Hong K; Hudson SD; Wagner NJ; Liu Y
    Soft Matter; 2018 Oct; 14(42):8570-8579. PubMed ID: 30320333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions.
    Godfrin PD; Valadez-Pérez NE; Castañeda-Priego R; Wagner NJ; Liu Y
    Soft Matter; 2014 Jul; 10(28):5061-71. PubMed ID: 24899107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres.
    Banchio AJ; Nägele G
    J Chem Phys; 2008 Mar; 128(10):104903. PubMed ID: 18345924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.
    Varga Z; Swan J
    Soft Matter; 2016 Sep; 12(36):7670-81. PubMed ID: 27550538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments.
    Riest J; Eckert T; Richtering W; Nägele G
    Soft Matter; 2015 Apr; 11(14):2821-43. PubMed ID: 25707362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediate range order and structure in colloidal dispersions with competing interactions.
    Godfrin PD; Castañeda-Priego R; Liu Y; Wagner NJ
    J Chem Phys; 2013 Oct; 139(15):154904. PubMed ID: 24160543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interaction between particles near elastic interfaces.
    Daddi-Moussa-Ider A; Gekle S
    J Chem Phys; 2016 Jul; 145(1):014905. PubMed ID: 27394123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions.
    Godfrin PD; Hudson SD; Hong K; Porcar L; Falus P; Wagner NJ; Liu Y
    Phys Rev Lett; 2015 Nov; 115(22):228302. PubMed ID: 26650319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders.
    Li J; Jiang X; Singh A; Heinonen OG; Hernández-Ortiz JP; de Pablo JJ
    J Chem Phys; 2020 May; 152(20):204109. PubMed ID: 32486693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic and Colloidal Interactions in Concentrated Charge-Stabilized Polymer Dispersions.
    Horn FM; Richtering W; Bergenholtz J; Willenbacher N; Wagner NJ
    J Colloid Interface Sci; 2000 May; 225(1):166-178. PubMed ID: 10767157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sticky, active microrheology: Part 1. Linear-response.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2019 Oct; 554():580-591. PubMed ID: 31326790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.