These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26426932)

  • 21. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids.
    Kim JM; Castañeda-Priego R; Liu Y; Wagner NJ
    J Chem Phys; 2011 Feb; 134(6):064904. PubMed ID: 21322731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheology and dynamics of colloidal superballs.
    Royer JR; Burton GL; Blair DL; Hudson SD
    Soft Matter; 2015 Jul; 11(28):5656-65. PubMed ID: 26078036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface.
    Dani A; Yeganeh M; Maldarelli C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):931-945. PubMed ID: 36037716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth kinetics of colloidal chains and labyrinths.
    Haw MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031402. PubMed ID: 20365731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cluster formation in fluids with competing short-range and long-range interactions.
    Sweatman MB; Fartaria R; Lue L
    J Chem Phys; 2014 Mar; 140(12):124508. PubMed ID: 24697460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a Simple Short-Range Attraction and Long-Range Repulsion Colloidal Model toward Predicting the Viscosity of Protein Solutions.
    Virk SS; Underhill PT
    Mol Pharm; 2022 Nov; 19(11):4233-4240. PubMed ID: 36129361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F; Fischer B; Roseker W; Grübel G; ägele G; Heinen M
    J Chem Phys; 2012 Sep; 137(11):114504. PubMed ID: 22998268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotational and translational self-diffusion in concentrated suspensions of permeable particles.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2011 Jun; 134(24):244903. PubMed ID: 21721660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The confined Generalized Stokes-Einstein relation and its consequence on intracellular two-point microrheology.
    Aponte-Rivera C; Zia RN
    J Colloid Interface Sci; 2022 Mar; 609():423-433. PubMed ID: 34906914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheology of clustering protein solutions.
    Dharmaraj VL; Godfrin PD; Liu Y; Hudson SD
    Biomicrofluidics; 2016 Jul; 10(4):043509. PubMed ID: 27478524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach - limitations and applicability for high-concentration liquid protein solutions.
    Wagner M; Reiche K; Blume A; Garidel P
    Pharm Dev Technol; 2013; 18(4):963-70. PubMed ID: 22256900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and short-time dynamics in suspensions of charged silica spheres in the entire fluid regime.
    Gapinski J; Patkowski A; Banchio AJ; Buitenhuis J; Holmqvist P; Lettinga MP; Meier G; Nägele G
    J Chem Phys; 2009 Feb; 130(8):084503. PubMed ID: 19256611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical properties of soft repulsive particle fluids.
    Heyes DM; Brańka AC
    Phys Chem Chem Phys; 2007 Nov; 9(41):5570-5. PubMed ID: 17957313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase behavior and bulk structural properties of a microphase former with anisotropic competing interactions: A density functional theory study.
    Stopper D; Roth R
    Phys Rev E; 2017 Oct; 96(4-1):042607. PubMed ID: 29347593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions.
    Al Harraq A; Hymel AA; Lin E; Truskett TM; Bharti B
    Commun Chem; 2022 Jun; 5(1):72. PubMed ID: 36697688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.