BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 26427375)

  • 1. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.
    Srihari S; Singla J; Wong L; Ragan MA
    Biol Direct; 2015 Oct; 10():57. PubMed ID: 26427375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Link synthetic lethality to drug sensitivity of cancer cells.
    Wang R; Han Y; Zhao Z; Yang F; Chen T; Zhou W; Wang X; Qi L; Zhao W; Guo Z; Gu Y
    Brief Bioinform; 2019 Jul; 20(4):1295-1307. PubMed ID: 29300844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TP53 mutations, expression and interaction networks in human cancers.
    Wang X; Sun Q
    Oncotarget; 2017 Jan; 8(1):624-643. PubMed ID: 27880943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.
    Tang YC; Ho SC; Tan E; Ng AWT; McPherson JR; Goh GYL; Teh BT; Bard F; Rozen SG
    Breast Cancer Res; 2018 Mar; 20(1):22. PubMed ID: 29566768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pan-Cancer Analysis of Potential Synthetic Lethal Drug Targets Specific to Alterations in DNA Damage Response.
    Das S; Camphausen K; Shankavaram U
    Front Oncol; 2019; 9():1136. PubMed ID: 31709193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs.
    Wappett M; Dulak A; Yang ZR; Al-Watban A; Bradford JR; Dry JR
    BMC Genomics; 2016 Jan; 17():65. PubMed ID: 26781748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.
    Ye H; Zhang X; Chen Y; Liu Q; Wei J
    Oncotarget; 2016 Aug; 7(34):55352-55367. PubMed ID: 27438146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.
    Guo J; Liu H; Zheng J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1011-7. PubMed ID: 26516187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.
    Benfatto S; Serçin Ö; Dejure FR; Abdollahi A; Zenke FT; Mardin BR
    Mol Cancer; 2021 Aug; 20(1):111. PubMed ID: 34454516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting human genetic interactions from cancer genome evolution.
    Lu X; Megchelenbrink W; Notebaart RA; Huynen MA
    PLoS One; 2015; 10(5):e0125795. PubMed ID: 25933428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell.
    Paul JM; Templeton SD; Baharani A; Freywald A; Vizeacoumar FJ
    Trends Mol Med; 2014 Dec; 20(12):704-15. PubMed ID: 25446836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.
    Pinoli P; Srihari S; Wong L; Ceri S
    BMC Bioinformatics; 2021 May; 22(1):250. PubMed ID: 33992077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in gene expression variability reveal a stable synthetic lethal interaction network in BRCA2-ovarian cancers.
    Bueno R; Mar JC
    Methods; 2017 Dec; 131():74-82. PubMed ID: 28754563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-species identification of PIP5K1-, splicing- and ubiquitin-related pathways as potential targets for RB1-deficient cells.
    Parkhitko AA; Singh A; Hsieh S; Hu Y; Binari R; Lord CJ; Hannenhalli S; Ryan CJ; Perrimon N
    PLoS Genet; 2021 Feb; 17(2):e1009354. PubMed ID: 33591981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes.
    Wang X; Zhang Y; Han ZG; He KY
    Medicine (Baltimore); 2016 Feb; 95(8):e2697. PubMed ID: 26937901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative analysis of large-scale loss-of-function screens identifies robust cancer-associated genetic interactions.
    Lord CJ; Quinn N; Ryan CJ
    Elife; 2020 May; 9():. PubMed ID: 32463358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality.
    Jerby-Arnon L; Pfetzer N; Waldman YY; McGarry L; James D; Shanks E; Seashore-Ludlow B; Weinstock A; Geiger T; Clemons PA; Gottlieb E; Ruppin E
    Cell; 2014 Aug; 158(5):1199-1209. PubMed ID: 25171417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks.
    Zangene E; Marashi SA; Montazeri H
    Sci Rep; 2023 Sep; 13(1):15763. PubMed ID: 37737478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.