BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26427454)

  • 1. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.
    Gerard X; Garanto A; Rozet JM; Collin RW
    Adv Exp Med Biol; 2016; 854():517-24. PubMed ID: 26427454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and In Vitro Use of Antisense Oligonucleotides to Correct Pre-mRNA Splicing Defects in Inherited Retinal Dystrophies.
    Garanto A; Collin RWJ
    Methods Mol Biol; 2018; 1715():61-78. PubMed ID: 29188506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter.
    Bacchi N; Casarosa S; Denti MA
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):3285-94. PubMed ID: 24867912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Based Therapeutic Strategies for Inherited Retinal Dystrophies.
    Garanto A
    Adv Exp Med Biol; 2019; 1185():71-77. PubMed ID: 31884591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases.
    Collin RW; Garanto A
    Curr Opin Ophthalmol; 2017 May; 28(3):260-266. PubMed ID: 28151748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Humanized Zebrafish Models for the In Vivo Assessment of Antisense Oligonucleotide-Based Splice Modulation Therapies.
    Schellens R; de Vrieze E; Slijkerman R; Kremer H; van Wijk E
    Methods Mol Biol; 2022; 2434():281-299. PubMed ID: 35213025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Therapy in Retinal Dystrophies.
    Ziccardi L; Cordeddu V; Gaddini L; Matteucci A; Parravano M; Malchiodi-Albedi F; Varano M
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing modulation mediated by small nuclear RNAs as therapeutic approaches for muscular dystrophies.
    Benchaouir R; Goyenvalle A
    Curr Gene Ther; 2012 Jun; 12(3):179-91. PubMed ID: 22515846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense Oligonucleotide-Based Splice Correction of a Deep-Intronic Mutation in CHM Underlying Choroideremia.
    Garanto A; van der Velde-Visser SD; Cremers FPM; Collin RWJ
    Adv Exp Med Biol; 2018; 1074():83-89. PubMed ID: 29721931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides.
    Echigoya Y; Yokota T
    Nucleic Acid Ther; 2014 Feb; 24(1):57-68. PubMed ID: 24380394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AON-Mediated Exon Skipping to Bypass Protein Truncation in Retinal Dystrophies Due to the Recurrent
    Barny I; Perrault I; Michel C; Goudin N; Defoort-Dhellemmes S; Ghazi I; Kaplan J; Rozet JM; Gerard X
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31091803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies.
    Slijkerman RW; Song F; Astuti GD; Huynen MA; van Wijk E; Stieger K; Collin RW
    Prog Retin Eye Res; 2015 Sep; 48():137-59. PubMed ID: 25936606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery.
    Garanto A; Chung DC; Duijkers L; Corral-Serrano JC; Messchaert M; Xiao R; Bennett J; Vandenberghe LH; Collin RW
    Hum Mol Genet; 2016 Jun; 25(12):2552-2563. PubMed ID: 27106101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense mediated splicing modulation for inherited metabolic diseases: challenges for delivery.
    Pérez B; Vilageliu L; Grinberg D; Desviat LR
    Nucleic Acid Ther; 2014 Feb; 24(1):48-56. PubMed ID: 24506780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes.
    Tei S; Ishii HT; Mitsuhashi H; Ishiura S
    Biochem Biophys Res Commun; 2015 Jun; 461(3):481-6. PubMed ID: 25888793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense Oligonucleotide Design and Evaluation of Splice-Modulating Properties Using Cell-Based Assays.
    Slijkerman R; Kremer H; van Wijk E
    Methods Mol Biol; 2018; 1828():519-530. PubMed ID: 30171565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations.
    Nagel-Wolfrum K; Möller F; Penner I; Wolfrum U
    Vis Neurosci; 2014 Sep; 31(4-5):309-16. PubMed ID: 24912600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.