BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26427557)

  • 1. Kinetics of quadruplex to duplex conversion.
    Mendoza O; Elezgaray J; Mergny JL
    Biochimie; 2015 Nov; 118():225-33. PubMed ID: 26427557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadruplex-coupled kinetics distinguishes ligand binding between G4 DNA motifs.
    Halder K; Chowdhury S
    Biochemistry; 2007 Dec; 46(51):14762-70. PubMed ID: 18052204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence intercalator displacement assay for screening G4 ligands towards a variety of G-quadruplex structures.
    Tran PL; Largy E; Hamon F; Teulade-Fichou MP; Mergny JL
    Biochimie; 2011 Aug; 93(8):1288-96. PubMed ID: 21641961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescence-based helicase assay: application to the screening of G-quadruplex ligands.
    Mendoza O; Gueddouda NM; Boulé JB; Bourdoncle A; Mergny JL
    Nucleic Acids Res; 2015 Jun; 43(11):e71. PubMed ID: 25765657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of locked nucleic acid modified complementary strand in quadruplex/Watson-Crick duplex equilibrium.
    Kumar N; Maiti S
    J Phys Chem B; 2007 Oct; 111(42):12328-37. PubMed ID: 17914789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of loop length variation on quadruplex-Watson Crick duplex competition.
    Kumar N; Sahoo B; Varun KA; Maiti S; Maiti S
    Nucleic Acids Res; 2008 Aug; 36(13):4433-42. PubMed ID: 18599514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of G-quadruplexes with nonintercalating duplex-DNA minor groove binding ligands.
    Jain AK; Bhattacharya S
    Bioconjug Chem; 2011 Dec; 22(12):2355-68. PubMed ID: 22074555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and thermodynamic characterization of telomeric G-quadruplex by nonequilibrium capillary electrophoresis: application to G-quadruplex/duplex competition.
    Xu Y; Feng X; Du W; Liu X; Luo Q; Liu BF
    Anal Chem; 2008 Sep; 80(18):6935-41. PubMed ID: 18693771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a high-throughput G4-FID assay for screening and evaluation of small molecules binding quadruplex nucleic acid structures.
    Largy E; Hamon F; Teulade-Fichou MP
    Anal Bioanal Chem; 2011 Jul; 400(10):3419-27. PubMed ID: 21528379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of flanking bases on quadruplex stability and Watson-Crick duplex competition.
    Arora A; Nair DR; Maiti S
    FEBS J; 2009 Jul; 276(13):3628-40. PubMed ID: 19490117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-quadruplexes unfolding by RHAU helicase.
    Gueddouda NM; Mendoza O; Gomez D; Bourdoncle A; Mergny JL
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1382-1388. PubMed ID: 28065761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity.
    Sanders CM
    Biochem J; 2010 Aug; 430(1):119-28. PubMed ID: 20524933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability.
    Safa L; Delagoutte E; Petruseva I; Alberti P; Lavrik O; Riou JF; Saintomé C
    Biochimie; 2014 Aug; 103():80-8. PubMed ID: 24747047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of G-quadruplex unwinding helicase: sequential and repetitive unfolding of G-quadruplex by Pif1 helicase.
    Hou XM; Wu WQ; Duan XL; Liu NN; Li HH; Fu J; Dou SX; Li M; Xi XG
    Biochem J; 2015 Feb; 466(1):189-99. PubMed ID: 25471447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex.
    Tran PLT; Rieu M; Hodeib S; Joubert A; Ouellet J; Alberti P; Bugaut A; Allemand JF; Boulé JB; Croquette V
    Nucleic Acids Res; 2021 May; 49(9):5189-5201. PubMed ID: 34009328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex.
    Zhao Y; Kan ZY; Zeng ZX; Hao YH; Chen H; Tan Z
    J Am Chem Soc; 2004 Oct; 126(41):13255-64. PubMed ID: 15479079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing G4-Binding Ligands In Vitro and in Cellulo Using Dimeric Carbocyanine Dye Displacement Assay.
    Desai N; Shah V; Datta B
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33807659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay.
    De Rache A; Mergny JL
    Biochimie; 2015 Aug; 115():194-202. PubMed ID: 26079222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assaying the binding strength of G-quadruplex ligands using single-molecule TPM experiments.
    Liu SW; Chu JF; Tsai CT; Fang HC; Chang TC; Li HW
    Anal Biochem; 2013 May; 436(2):101-8. PubMed ID: 23376016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and real-time measurement of helicase-mediated intra-stranded G4 unfolding in bulk fluorescence stopped-flow assays.
    Liu NN; Ji L; Guo Q; Dai YX; Wu WQ; Guo HL; Lu KY; Li XM; Xi XG
    Anal Bioanal Chem; 2020 Nov; 412(27):7395-7404. PubMed ID: 32851458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.