BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26427746)

  • 1. Design and Evaluation of the Kinect-Wheelchair Interface Controlled (KWIC) Smart Wheelchair for Pediatric Powered Mobility Training.
    Zondervan DK; Secoli R; Darling AM; Farris J; Furumasu J; Reinkensmeyer DJ
    Assist Technol; 2015; 27(3):183-92. PubMed ID: 26427746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a smart wheelchair as a gaming device for floor-projected games: a mixed-reality environment for training powered-wheelchair driving skills.
    Secoli R; Zondervan D; Reinkensmeyer D
    Stud Health Technol Inform; 2012; 173():450-6. PubMed ID: 22357035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic wheelchair trainer: design overview and a feasibility study.
    Marchal-Crespo L; Furumasu J; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2010 Aug; 7():40. PubMed ID: 20707886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Smart Wheelchair: is it an appropriate mobility training tool for children with physical disabilities?
    McGarry S; Moir L; Girdler S
    Disabil Rehabil Assist Technol; 2012 Sep; 7(5):372-80. PubMed ID: 22124287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The IndieTrainer system: a clinical trial protocol exploring use of a powered wheelchair training intervention for children with cerebral palsy.
    Kenyon LK; Farris J; Veety L; Zondervan DK
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1579-1589. PubMed ID: 37256733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of virtual reality technology in the assessment and training of inexperienced powered wheelchair users.
    Harrison A; Derwent G; Enticknap A; Rose FD; Attree EA
    Disabil Rehabil; 2002 Jul 20-Aug 15; 24(11-12):599-606. PubMed ID: 12182799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a computer simulator for training children with disabilities in the operation of a powered wheelchair.
    Hasdai A; Jessel AS; Weiss PL
    Am J Occup Ther; 1998 Mar; 52(3):215-20. PubMed ID: 9521997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users.
    Prémont MÉ; Vincent C; Mostafavi MA
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):844-855. PubMed ID: 31226889
    [No Abstract]   [Full Text] [Related]  

  • 9. Use of manual and powered wheelchair in children with cerebral palsy: a cross-sectional study.
    Rodby-Bousquet E; Hägglund G
    BMC Pediatr; 2010 Aug; 10():59. PubMed ID: 20712899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rehab on Wheels: A Pilot Study of Tablet-Based Wheelchair Training for Older Adults.
    Giesbrecht EM; Miller WC; Jin BT; Mitchell IM; Eng JJ
    JMIR Rehabil Assist Technol; 2015 Apr; 2(1):e3. PubMed ID: 28582240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How many people would benefit from a smart wheelchair?
    Simpson RC; LoPresti EF; Cooper RA
    J Rehabil Res Dev; 2008; 45(1):53-71. PubMed ID: 18566926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of the Pediatric Powered Wheelchair Screening Test for children with cerebral palsy.
    Furumasu J; Guerette P; Tefft D
    Dev Med Child Neurol; 2004 Jul; 46(7):468-74. PubMed ID: 15230460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development and preliminary evaluation of a training device for wheelchair users: the GAME(Wheels) system.
    Fitzgerald SG; Cooper RA; Zipfel E; Spaeth DM; Puhlman J; Kelleher A; Cooper R; Guo S
    Disabil Rehabil Assist Technol; 2006; 1(1-2):129-39. PubMed ID: 19256176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usability of the 'Kinect-ing' with Clinicians Website: A Knowledge Translation Resource Supporting Decisions About Active Videogame Use in Rehabilitation.
    Levac DE; Pradhan S; Espy D; Fox E; Deutsch JE
    Games Health J; 2018 Dec; 7(6):362-368. PubMed ID: 30179519
    [No Abstract]   [Full Text] [Related]  

  • 15. Pediatric powered mobility training: powered wheelchair versus simulator-based practice.
    Gefen N; Archambault PS; Rigbi A; Weiss PL
    Assist Technol; 2023 Sep; 35(5):389-398. PubMed ID: 35737961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a manual wheelchair interface to computer games.
    O'Connor TJ; Cooper RA; Fitzgerald SG; Dvorznak MJ; Boninger ML; VanSickle DP; Glass L
    Neurorehabil Neural Repair; 2000; 14(1):21-31. PubMed ID: 11228946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users.
    Zeng Q; Burdet E; Teo CL
    Neurorehabil Neural Repair; 2009 Jun; 23(5):494-504. PubMed ID: 19074687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an intelligent wheelchair system for users with cerebral palsy.
    Montesano L; Díaz M; Bhaskar S; Minguez J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):193-202. PubMed ID: 20071276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive model of proficiency in powered mobility of children and young adults with motor impairments.
    Gefen N; Rigbi A; Weiss PL
    Dev Med Child Neurol; 2019 Dec; 61(12):1416-1422. PubMed ID: 31115048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.