These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26428062)

  • 21. Auxin controls petal initiation in Arabidopsis.
    Lampugnani ER; Kilinc A; Smyth DR
    Development; 2013 Jan; 140(1):185-94. PubMed ID: 23175631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of Aintegumenta as a gene to modify floral size in ornamental plants.
    Manchado-Rojo M; Weiss J; Egea-Cortines M
    Plant Biotechnol J; 2014 Oct; 12(8):1053-65. PubMed ID: 24985495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional analysis of petal organogenesis in Gerbera hybrida.
    Laitinen RA; Pöllänen E; Teeri TH; Elomaa P; Kotilainen M
    Planta; 2007 Jul; 226(2):347-60. PubMed ID: 17334783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis.
    Yang Y; Chen B; Dang X; Zhu L; Rao J; Ren H; Lin C; Qin Y; Lin D
    J Exp Bot; 2019 Oct; 70(19):5231-5243. PubMed ID: 31198941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.
    Fang ZW; Qi R; Li XF; Liu ZX
    Gene; 2014 Oct; 550(2):200-6. PubMed ID: 25149019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Interaction of the BRACTEA gene with the TERMINAL FLOWER1, LEAFY, and APETALA1 genes during inflorescence and flower development in Arabidopsis thaliana].
    Penin AA; Budaev RA; Ezhova TA
    Genetika; 2007 Mar; 43(3):370-6. PubMed ID: 17486756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves.
    Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA
    Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size.
    Szécsi J; Joly C; Bordji K; Varaud E; Cock JM; Dumas C; Bendahmane M
    EMBO J; 2006 Aug; 25(16):3912-20. PubMed ID: 16902407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis ovule development and its evolutionary conservation.
    Colombo L; Battaglia R; Kater MM
    Trends Plant Sci; 2008 Aug; 13(8):444-50. PubMed ID: 18571972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops.
    Azuma M; Morimoto R; Hirose M; Morita Y; Hoshino A; Iida S; Oshima Y; Mitsuda N; Ohme-Takagi M; Shiratake K
    Plant Biotechnol J; 2016 Jan; 14(1):354-63. PubMed ID: 25923400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Yadav SR; Prasad K; Vijayraghavan U
    Genetics; 2007 May; 176(1):283-94. PubMed ID: 17409064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of the lily p70(s6k) gene in Arabidopsis affects elongation of flower organs and indicates TOR-dependent regulation of AP3, PI and SUP translation.
    Tzeng TY; Kong LR; Chen CH; Shaw CC; Yang CH
    Plant Cell Physiol; 2009 Sep; 50(9):1695-709. PubMed ID: 19651701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.
    Crawford BC; Nath U; Carpenter R; Coen ES
    Plant Physiol; 2004 May; 135(1):244-53. PubMed ID: 15122032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.
    Takeda S; Matsumoto N; Okada K
    Development; 2004 Jan; 131(2):425-34. PubMed ID: 14681191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.
    Alvarez-Buylla ER; Chaos A; Aldana M; Benítez M; Cortes-Poza Y; Espinosa-Soto C; Hartasánchez DA; Lotto RB; Malkin D; Escalera Santos GJ; Padilla-Longoria P
    PLoS One; 2008; 3(11):e3626. PubMed ID: 18978941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of regulatory interactions controlling floral asymmetry.
    Costa MM; Fox S; Hanna AI; Baxter C; Coen E
    Development; 2005 Nov; 132(22):5093-101. PubMed ID: 16236768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system.
    Battaglia R; Brambilla V; Colombo L; Stuitje AR; Kater MM
    Mech Dev; 2006 Apr; 123(4):267-76. PubMed ID: 16515858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic basis for innovations in floral organ identity.
    Kramer EM; Jaramillo MA
    J Exp Zool B Mol Dev Evol; 2005 Nov; 304(6):526-35. PubMed ID: 15880769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. KLUH/CYP78A5 promotes organ growth without affecting the size of the early primordium.
    Stransfeld L; Eriksson S; Adamski NM; Breuninger H; Lenhard M
    Plant Signal Behav; 2010 Aug; 5(8):982-4. PubMed ID: 20657185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.