BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26428272)

  • 1. Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes.
    Buslov I; Becouse J; Mazza S; Montandon-Clerc M; Hu X
    Angew Chem Int Ed Engl; 2015 Nov; 54(48):14523-6. PubMed ID: 26428272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes.
    Shi R; Zhang Z; Hu X
    Acc Chem Res; 2019 May; 52(5):1471-1483. PubMed ID: 31008581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylation.
    Peng D; Zhang Y; Du X; Zhang L; Leng X; Walter MD; Huang Z
    J Am Chem Soc; 2013 Dec; 135(51):19154-66. PubMed ID: 24304467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation.
    Hu MY; He Q; Fan SJ; Wang ZC; Liu LY; Mu YJ; Peng Q; Zhu SF
    Nat Commun; 2018 Jan; 9(1):221. PubMed ID: 29335560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes.
    Buslov I; Song F; Hu X
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12295-9. PubMed ID: 27612210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Nickel Hydrosilylation Catalysts.
    Nakajima Y; Sato K; Shimada S
    Chem Rec; 2016 Oct; 16(5):2379-2387. PubMed ID: 27500588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control over Selectivity in Alkene Hydrosilylation Catalyzed by Cobalt(III) Hydride Complexes.
    Yang H; Hinz A; Fan Q; Xie S; Qi X; Huang W; Li Q; Sun H; Li X
    Inorg Chem; 2022 Dec; 61(49):19710-19725. PubMed ID: 36455154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-catalyzed silylation of sp
    Li B; Dixneuf PH
    Chem Soc Rev; 2021 Apr; 50(8):5062-5085. PubMed ID: 33629997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes.
    Tondreau AM; Atienza CC; Weller KJ; Nye SA; Lewis KM; Delis JG; Chirik PJ
    Science; 2012 Feb; 335(6068):567-70. PubMed ID: 22301315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Selectivity through Synergy between Catalysts, Silanes and Reaction Conditions in Cobalt-Catalyzed Hydrosilylation of Dienes and Terminal Alkenes.
    Raya B; Jing S; RajanBabu TV
    ACS Catal; 2017 Apr; 7(4):2275-2283. PubMed ID: 28593082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fifty Years of Hydrosilylation in Polymer Science: A Review of Current Trends of Low-Cost Transition-Metal and Metal-Free Catalysts, Non-Thermally Triggered Hydrosilylation Reactions, and Industrial Applications.
    Hofmann RJ; Vlatković M; Wiesbrock F
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation.
    Sun W; Li MP; Li LJ; Huang Q; Hu MY; Zhu SF
    Chem Sci; 2022 Mar; 13(9):2721-2728. PubMed ID: 35340863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Ligand-Free Pt
    Rivero-Crespo MA; Leyva-Pérez A; Corma A
    Chemistry; 2017 Jan; 23(7):1702-1708. PubMed ID: 27906484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Markovnikov terminal and gem-olefin hydrosilylation using a κ
    Rock CL; Trovitch RJ
    Dalton Trans; 2019 Jan; 48(2):461-467. PubMed ID: 30488914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare-Earth Metal Complexes Supported by 1,3-Functionalized Indolyl-Based Ligands for Efficient Hydrosilylation of Alkenes.
    Zhu S; Xu W; Hong D; Wu W; Chai F; Zhu X; Zhou S; Wang S
    Inorg Chem; 2023 Jan; 62(1):381-391. PubMed ID: 36576868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst.
    Chen C; Hecht MB; Kavara A; Brennessel WW; Mercado BQ; Weix DJ; Holland PL
    J Am Chem Soc; 2015 Oct; 137(41):13244-7. PubMed ID: 26444496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a Highly Active Catalytic System Based on Cobalt Nanoparticles for Terminal and Internal Alkene Hydrosilylation.
    Jakoobi M; Dardun V; Veyre L; Meille V; Camp C; Thieuleux C
    J Org Chem; 2020 Sep; 85(18):11732-11740. PubMed ID: 32844646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A one-pot synthesis of (E)-disubstituted alkenes by a bimetallic [Rh-Pd]-catalyzed hydrosilylation/hiyama cross-coupling sequence.
    Thiot C; Schmutz M; Wagner A; Mioskowski C
    Chemistry; 2007; 13(32):8971-8. PubMed ID: 17680571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel-Catalyzed Hydrosilylation of Terminal Alkenes with Primary Silanes via Electrophilic Silicon-Hydrogen Bond Activation.
    Wu X; Ding G; Lu W; Yang L; Wang J; Zhang Y; Xie X; Zhang Z
    Org Lett; 2021 Feb; 23(4):1434-1439. PubMed ID: 33522233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.