These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 26428299)
1. Improving Properties of Recombinant SsoPox by Site-Specific Pegylation. Parikh H; Bajaj P; Tripathy RK; Pande AH Protein Pept Lett; 2015; 22(12):1098-103. PubMed ID: 26428299 [TBL] [Abstract][Full Text] [Related]
2. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. Restaino OF; Borzacchiello MG; Scognamiglio I; Fedele L; Alfano A; Porzio E; Manco G; De Rosa M; Schiraldi C BMC Biotechnol; 2018 Mar; 18(1):18. PubMed ID: 29558934 [TBL] [Abstract][Full Text] [Related]
3. Structural and Functional Characterization of New SsoPox Variant Points to the Dimer Interface as a Driver for the Increase in Promiscuous Paraoxonase Activity. Suzumoto Y; Dim O; Roviello GN; Worek F; Sussman JL; Manco G Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32121487 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
5. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. Hiblot J; Gotthard G; Elias M; Chabriere E PLoS One; 2013; 8(9):e75272. PubMed ID: 24086491 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning. Jun D; Musilová L; Link M; Loiodice M; Nachon F; Rochu D; Renault F; Masson P Chem Biol Interact; 2010 Sep; 187(1-3):380-3. PubMed ID: 20230809 [TBL] [Abstract][Full Text] [Related]
7. Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase. Elias M; Dupuy J; Merone L; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jul; 63(Pt 7):553-5. PubMed ID: 17620708 [TBL] [Abstract][Full Text] [Related]
8. Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Merone L; Mandrich L; Porzio E; Rossi M; Müller S; Reiter G; Worek F; Manco G Bioresour Technol; 2010 Dec; 101(23):9204-12. PubMed ID: 20667718 [TBL] [Abstract][Full Text] [Related]
9. A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Merone L; Mandrich L; Rossi M; Manco G Extremophiles; 2005 Aug; 9(4):297-305. PubMed ID: 15909078 [TBL] [Abstract][Full Text] [Related]
10. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Rémy B; Plener L; Poirier L; Elias M; Daudé D; Chabrière E Sci Rep; 2016 Nov; 6():37780. PubMed ID: 27876889 [TBL] [Abstract][Full Text] [Related]
11. Phosphotriesterase-Magnetic Nanoparticle Bioconjugates with Improved Enzyme Activity in a Biocatalytic Membrane Reactor. Gebreyohannes AY; Mazzei R; Marei Abdelrahim MY; Vitola G; Porzio E; Manco G; Barboiu M; Giorno L Bioconjug Chem; 2018 Jun; 29(6):2001-2008. PubMed ID: 29792416 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Hiblot J; Gotthard G; Chabriere E; Elias M Sci Rep; 2012; 2():779. PubMed ID: 23139857 [TBL] [Abstract][Full Text] [Related]
13. Substitution of the catalytic metal and protein PEGylation enhances activity and stability of bacterial phosphotriesterase. Perezgasga L; Sánchez-Sánchez L; Aguila S; Vazquez-Duhalt R Appl Biochem Biotechnol; 2012 Mar; 166(5):1236-47. PubMed ID: 22249853 [TBL] [Abstract][Full Text] [Related]
14. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants. Politi L; Chiancone E; Giangiacomo L; Cervoni L; Scotto d'Abusco A; Scorsino S; Scandurra R Archaea; 2009 Feb; 2(4):221-31. PubMed ID: 19478917 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the ion exchange chromatography for matrix-assisted PEGylation and purification of consensus interferon. Bajwa F; Ahmed N; Khan MA; Azam F; Akram M; Tahir S; Zafar AU Biotechnol Appl Biochem; 2020 Mar; 67(2):196-205. PubMed ID: 31589775 [TBL] [Abstract][Full Text] [Related]
16. The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis. Ely F; Hadler KS; Gahan LR; Guddat LW; Ollis DL; Schenk G Biochem J; 2010 Dec; 432(3):565-73. PubMed ID: 20868365 [TBL] [Abstract][Full Text] [Related]
18. Solid-phase N-terminus PEGylation of recombinant human fibroblast growth factor 2 on heparin-sepharose column. Huang Z; Ye C; Liu Z; Wang X; Chen H; Liu Y; Tang L; Zhao H; Wang J; Feng W; Li X Bioconjug Chem; 2012 Apr; 23(4):740-50. PubMed ID: 22433083 [TBL] [Abstract][Full Text] [Related]
19. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Basu A; Yang K; Wang M; Liu S; Chintala R; Palm T; Zhao H; Peng P; Wu D; Zhang Z; Hua J; Hsieh MC; Zhou J; Petti G; Li X; Janjua A; Mendez M; Liu J; Longley C; Zhang Z; Mehlig M; Borowski V; Viswanathan M; Filpula D Bioconjug Chem; 2006; 17(3):618-30. PubMed ID: 16704199 [TBL] [Abstract][Full Text] [Related]
20. Preparation and stability of N-terminal mono-PEGylated recombinant human endostatin. Nie Y; Zhang X; Wang X; Chen J Bioconjug Chem; 2006; 17(4):995-9. PubMed ID: 16848407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]