BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26428382)

  • 1. Non-human Primate Lymphocryptoviruses: Past, Present, and Future.
    Mühe J; Wang F
    Curr Top Microbiol Immunol; 2015; 391():385-405. PubMed ID: 26428382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epstein-Barr Virus gp350 Can Functionally Replace the Rhesus Lymphocryptovirus Major Membrane Glycoprotein and Does Not Restrict Infection of Rhesus Macaques.
    Herrman M; Mühe J; Quink C; Wang F
    J Virol; 2016 Feb; 90(3):1222-30. PubMed ID: 26559839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonhuman primate models for Epstein-Barr virus infection.
    Wang F
    Curr Opin Virol; 2013 Jun; 3(3):233-7. PubMed ID: 23562212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simian homologues of Epstein-Barr virus.
    Wang F; Rivailler P; Rao P; Cho Y
    Philos Trans R Soc Lond B Biol Sci; 2001 Apr; 356(1408):489-97. PubMed ID: 11313007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evidence for rhesus lymphocryptovirus infection of epithelial cells in immunosuppressed rhesus macaques.
    Kutok JL; Klumpp S; Simon M; MacKey JJ; Nguyen V; Middeldorp JM; Aster JC; Wang F
    J Virol; 2004 Apr; 78(7):3455-61. PubMed ID: 15016868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses.
    Spiess K; Fares S; Sparre-Ulrich AH; Hilgenberg E; Jarvis MA; Ehlers B; Rosenkilde MM
    J Virol; 2015 Feb; 89(4):2253-67. PubMed ID: 25505061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibodies to lytic infection proteins in lymphocryptovirus-infected rhesus macaques: a model for humoral immune responses to epstein-barr virus infection.
    Orlova N; Fogg MH; Carville A; Wang F
    Clin Vaccine Immunol; 2011 Sep; 18(9):1427-34. PubMed ID: 21734064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CD8+ T-cell response to an Epstein-Barr virus-related gammaherpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA-1 homologue.
    Fogg MH; Kaur A; Cho YG; Wang F
    J Virol; 2005 Oct; 79(20):12681-91. PubMed ID: 16188971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new animal model for Epstein-Barr virus pathogenesis.
    Wang F
    Curr Top Microbiol Immunol; 2001; 258():201-19. PubMed ID: 11443863
    [No Abstract]   [Full Text] [Related]  

  • 10. Infection of human B lymphocytes with lymphocryptoviruses related to Epstein-Barr virus.
    Moghaddam A; Koch J; Annis B; Wang F
    J Virol; 1998 Apr; 72(4):3205-12. PubMed ID: 9525646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative pathobiology of macaque lymphocryptoviruses.
    Carville A; Mansfield KG
    Comp Med; 2008 Feb; 58(1):57-67. PubMed ID: 19793458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Epstein-Barr virus encoded inhibitor of Colony Stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection.
    Ohashi M; Fogg MH; Orlova N; Quink C; Wang F
    PLoS Pathog; 2012 Dec; 8(12):e1003095. PubMed ID: 23300447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses.
    Rivailler P; Cho YG; Wang F
    J Virol; 2002 Dec; 76(23):12055-68. PubMed ID: 12414947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of the Epstein-Barr virus-related rhesus lymphocryptovirus as a bacterial artificial chromosome: a loss-of-function mutation of the rhBARF1 immune evasion gene.
    Ohashi M; Orlova N; Quink C; Wang F
    J Virol; 2011 Feb; 85(3):1330-9. PubMed ID: 21084476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenovirus-based vaccines against rhesus lymphocryptovirus EBNA-1 induce expansion of specific CD8+ and CD4+ T cells in persistently infected rhesus macaques.
    Leskowitz R; Fogg MH; Zhou XY; Kaur A; Silveira EL; Villinger F; Lieberman PM; Wang F; Ertl HC
    J Virol; 2014 May; 88(9):4721-35. PubMed ID: 24522914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative PCR assays reveal high prevalence of lymphocryptovirus as well as lytic phase gene expression in peripheral blood cells of cynomolgus macaques.
    Kamperschroer C; Tartaro K; Kumpf SW
    J Virol Methods; 2014 Oct; 207():220-5. PubMed ID: 25064358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host.
    Rivailler P; Carville A; Kaur A; Rao P; Quink C; Kutok JL; Westmoreland S; Klumpp S; Simon M; Aster JC; Wang F
    Blood; 2004 Sep; 104(5):1482-9. PubMed ID: 15150077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary conservation of primate lymphocryptovirus microRNA targets.
    Skalsky RL; Kang D; Linnstaedt SD; Cullen BR
    J Virol; 2014 Feb; 88(3):1617-35. PubMed ID: 24257599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of two types of rhesus lymphocryptovirus similar to type 1 and type 2 Epstein-Barr virus.
    Cho YG; Gordadze AV; Ling PD; Wang F
    J Virol; 1999 Nov; 73(11):9206-12. PubMed ID: 10516028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of the rhesus lymphocryptovirus viral capsid antigen and Epstein-Barr virus-encoded small RNA homologues and use in diagnosis of acute and persistent infections.
    Rao P; Jiang H; Wang F
    J Clin Microbiol; 2000 Sep; 38(9):3219-25. PubMed ID: 10970361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.