These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26428659)

  • 1. A new algorithm to improve assessment of cortical bone geometry in pQCT.
    Cervinka T; Sievänen H; Lala D; Cheung AM; Giangregorio L; Hyttinen J
    Bone; 2015 Dec; 81():721-730. PubMed ID: 26428659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure.
    Tjong W; Kazakia GJ; Burghardt AJ; Majumdar S
    Med Phys; 2012 Apr; 39(4):1893-903. PubMed ID: 22482611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold-free automatic detection of cortical bone geometry by peripheral quantitative computed tomography.
    Cervinka T; Hyttinen J; Sievänen H
    J Clin Densitom; 2012; 15(4):413-421. PubMed ID: 22572529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography.
    Ward KA; Adams JE; Hangartner TN
    Calcif Tissue Int; 2005 Nov; 77(5):275-80. PubMed ID: 16307388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved accuracy in the assessment of vertebral cortical thickness by quantitative computed tomography using the Iterative Convolution OptimizatioN (ICON) method.
    Damm T; Peña JA; Campbell GM; Bastgen J; Barkmann R; Glüer CC
    Bone; 2019 Mar; 120():194-203. PubMed ID: 30201318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification and quantification of trabecular microarchitecture classes by 3-D texture analysis-based clustering.
    Valentinitsch A; Patsch JM; Burghardt AJ; Link TM; Majumdar S; Fischer L; Schueller-Weidekamm C; Resch H; Kainberger F; Langs G
    Bone; 2013 May; 54(1):133-40. PubMed ID: 23313281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cortical bone measurements between pQCT and HR-pQCT.
    Lala D; Cheung AM; Gordon C; Giangregorio L
    J Clin Densitom; 2012; 15(3):275-81. PubMed ID: 22542223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision.
    Sievänen H; Koskue V; Rauhio A; Kannus P; Heinonen A; Vuori I
    J Bone Miner Res; 1998 May; 13(5):871-82. PubMed ID: 9610752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of bone CT images and assessment of bone structure using measures of complexity.
    Saparin P; Thomsen JS; Kurths J; Beller G; Gowin W
    Med Phys; 2006 Oct; 33(10):3857-73. PubMed ID: 17089850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of methods for in vivo assessment of cortical porosity in the human appendicular skeleton.
    Jorgenson BL; Buie HR; McErlain DD; Sandino C; Boyd SK
    Bone; 2015 Apr; 73():167-75. PubMed ID: 25540917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images.
    Zebaze R; Ghasem-Zadeh A; Mbala A; Seeman E
    Bone; 2013 May; 54(1):8-20. PubMed ID: 23334082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography.
    Davis KA; Burghardt AJ; Link TM; Majumdar S
    Calcif Tissue Int; 2007 Nov; 81(5):364-71. PubMed ID: 17952361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of trabecular and cortical compartments in HR-pQCT images using an embedding-predicting U-Net and morphological post-processing.
    Neeteson NJ; Besler BA; Whittier DE; Boyd SK
    Sci Rep; 2023 Jan; 13(1):252. PubMed ID: 36604534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution in vivo imaging of bone and joints: a window to microarchitecture.
    Geusens P; Chapurlat R; Schett G; Ghasem-Zadeh A; Seeman E; de Jong J; van den Bergh J
    Nat Rev Rheumatol; 2014 May; 10(5):304-13. PubMed ID: 24595090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle and Myotendinous Tissue Properties at the Distal Tibia as Assessed by High-Resolution Peripheral Quantitative Computed Tomography.
    Erlandson MC; Wong AKO; Szabo E; Vilayphiou N; Zulliger MA; Adachi JD; Cheung AM
    J Clin Densitom; 2017; 20(2):226-232. PubMed ID: 27956336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. μCT-based trabecular anisotropy can be reproducibly computed from HR-pQCT scans using the triangulated bone surface.
    Hosseini HS; Maquer G; Zysset PK
    Bone; 2017 Apr; 97():114-120. PubMed ID: 28109918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT.
    Manske SL; Zhu Y; Sandino C; Boyd SK
    Bone; 2015 Oct; 79():213-21. PubMed ID: 26079995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical imaging of bone microarchitecture with HR-pQCT.
    Nishiyama KK; Shane E
    Curr Osteoporos Rep; 2013 Jun; 11(2):147-55. PubMed ID: 23504496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.
    Kroker A; Zhu Y; Manske SL; Barber R; Mohtadi N; Boyd SK
    Bone; 2017 Apr; 97():43-48. PubMed ID: 28039095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring apparent trabecular structure with pQCT: a comparison with HR-pQCT.
    Lala D; Cheung AM; Lynch CL; Inglis D; Gordon C; Tomlinson G; Giangregorio L
    J Clin Densitom; 2014; 17(1):47-53. PubMed ID: 23567093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.