BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26428671)

  • 1. Liposome Formation Using a Coaxial Turbulent Jet in Co-Flow.
    Costa AP; Xu X; Khan MA; Burgess DJ
    Pharm Res; 2016 Feb; 33(2):404-16. PubMed ID: 26428671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.
    Santo IE; Campardelli R; Albuquerque EC; Vieira De Melo SAB; Reverchon E; Porta GD
    J Pharm Sci; 2015 Nov; 104(11):3842-3850. PubMed ID: 26211426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.
    Phapal SM; Sunthar P
    Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method.
    Stano P; Bufali S; Pisano C; Bucci F; Barbarino M; Santaniello M; Carminati P; Luisi PL
    J Liposome Res; 2004; 14(1-2):87-109. PubMed ID: 15461935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid single-step formation of liposomes by flow assisted stationary phase interdiffusion.
    Has C; Phapal SM; Sunthar P
    Chem Phys Lipids; 2018 May; 212():144-151. PubMed ID: 29355518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing.
    Sansare S; Duran T; Mohammadiarani H; Goyal M; Yenduri G; Costa A; Xu X; O'Connor T; Burgess D; Chaudhuri B
    Int J Pharm; 2021 Jun; 603():120713. PubMed ID: 34019974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: Formulation, cellular uptake and biodistribution investigations.
    Lou G; Anderluzzi G; Woods S; Roberts CW; Perrie Y
    Eur J Pharm Biopharm; 2019 Oct; 143():51-60. PubMed ID: 31445156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic liposome (DC-Chol/DOPE=1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression.
    Maitani Y; Igarashi S; Sato M; Hattori Y
    Int J Pharm; 2007 Sep; 342(1-2):33-9. PubMed ID: 17566677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic directed formation of liposomes of controlled size.
    Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M
    Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liposome and niosome preparation using a membrane contactor for scale-up.
    Pham TT; Jaafar-Maalej C; Charcosset C; Fessi H
    Colloids Surf B Biointerfaces; 2012 Jun; 94():15-21. PubMed ID: 22326648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous processing of paclitaxel polymeric micelles.
    Gupta A; Costa AP; Xu X; Burgess DJ
    Int J Pharm; 2021 Sep; 607():120946. PubMed ID: 34333023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of homogeneous unilamellar liposomes from an interdigitated matrix.
    Polozova A; Li X; Shangguan T; Meers P; Schuette DR; Ando N; Gruner SM; Perkins WR
    Biochim Biophys Acta; 2005 Feb; 1668(1):117-25. PubMed ID: 15670737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ethanol evaporation on the properties of inkjet produced liposomes.
    Bnyan R; Cesarini L; Khan I; Roberts M; Ehtezazi T
    Daru; 2020 Jun; 28(1):271-280. PubMed ID: 32303981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified and derived ethanol injection toward liposomes: development of the process.
    Gentine P; Bourel-Bonnet L; Frisch B
    J Liposome Res; 2013 Mar; 23(1):11-9. PubMed ID: 23020802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposome formation from bile salt-lipid micelles in the digestion and drug delivery model FaSSIF(mod) estimated by combined time-resolved neutron and dynamic light scattering.
    Nawroth T; Buch P; Buch K; Langguth P; Schweins R
    Mol Pharm; 2011 Dec; 8(6):2162-72. PubMed ID: 21988605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.
    Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y
    Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liposomes from hydrogenated soya lecithin formed in sintered glass pores.
    Zawada ZH
    Acta Pol Pharm; 2012; 69(1):107-11. PubMed ID: 22574513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of unilamellar liposomes from total polar lipid extracts of methanogens.
    Choquet CG; Patel GB; Beveridge TJ; Sprott GD
    Appl Environ Microbiol; 1992 Sep; 58(9):2894-900. PubMed ID: 1444403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile microfluidic method for production of liposomes.
    Pradhan P; Guan J; Lu D; Wang PG; Lee LJ; Lee RJ
    Anticancer Res; 2008; 28(2A):943-7. PubMed ID: 18507040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.