These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 26428990)

  • 1. Memetic algorithms for ligand expulsion from protein cavities.
    Rydzewski J; Nowak W
    J Chem Phys; 2015 Sep; 143(12):124101. PubMed ID: 26428990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.
    Rydzewski J; Nowak W
    J Chem Theory Comput; 2016 Apr; 12(4):2110-20. PubMed ID: 26989997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):813-30. PubMed ID: 11061977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.
    Miao Y; McCammon JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12162-12167. PubMed ID: 27791003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution.
    Nguyen HL; Thai NQ; Li MS
    J Chem Theory Comput; 2022 Jun; 18(6):3860-3872. PubMed ID: 35512104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.
    Rydzewski J; Nowak W
    Phys Life Rev; 2017 Dec; 22-23():58-74. PubMed ID: 28410930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study.
    Guallar V; Friesner RA
    J Am Chem Soc; 2004 Jul; 126(27):8501-8. PubMed ID: 15238007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of reaction in cytochrome P450: Hydroxylation of camphor in P450cam.
    Zurek J; Foloppe N; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2006 Nov; 4(21):3931-7. PubMed ID: 17047872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of alcohols on binding of camphor to cytochrome P450cam: spectroscopic and stopped flow transient kinetic studies.
    Murugan R; Mazumdar S
    Arch Biochem Biophys; 2006 Nov; 455(2):154-62. PubMed ID: 17049478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant.
    Kim SH; Yang TC; Perera R; Jin S; Bryson TA; Sono M; Davydov R; Dawson JH; Hoffman BM
    Dalton Trans; 2005 Nov; (21):3464-9. PubMed ID: 16234926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding favors enhanced NO binding to P450cam.
    Franke A; Stochel G; Jung C; Van Eldik R
    J Am Chem Soc; 2004 Apr; 126(13):4181-91. PubMed ID: 15053607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in the P450cam/PDX complex. The QM/MM e-pathway.
    Wallrapp F; Masone D; Guallar V
    J Phys Chem A; 2008 Dec; 112(50):12989-94. PubMed ID: 18823106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?
    Wang W; Wang J; Kollman PA
    Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket.
    Helms V; Deprez E; Gill E; Barret C; Hui Bon Hoa G; Wade RC
    Biochemistry; 1996 Feb; 35(5):1485-99. PubMed ID: 8634279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam.
    Lonsdale R; Harvey JN; Mulholland AJ
    J Phys Chem B; 2010 Jan; 114(2):1156-62. PubMed ID: 20014756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.