These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 26429199)
1. Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv. Ramakrishnan G; Chandra NR; Srinivasan N Mol Biosyst; 2015 Dec; 11(12):3316-31. PubMed ID: 26429199 [TBL] [Abstract][Full Text] [Related]
2. Polypharmacological repurposing approach identifies approved drugs as potential inhibitors of Mycobacterium tuberculosis. Singh J; Quadir N; Vashishtha S; Chakraborty A; Alam A; Kundu B; Ahmad U; Sundar D; Ehtesham NZ; Hasnain SE Biochem J; 2023 Jul; 480(14):1079-1096. PubMed ID: 37306466 [TBL] [Abstract][Full Text] [Related]
3. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis. Singh V; Somvanshi P Protein Pept Lett; 2010 Feb; 17(2):269-76. PubMed ID: 20214650 [TBL] [Abstract][Full Text] [Related]
4. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
5. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Madugula SS; Nagamani S; Jamir E; Priyadarsinee L; Sastry GN Mol Divers; 2022 Jun; 26(3):1675-1695. PubMed ID: 34468898 [TBL] [Abstract][Full Text] [Related]
6. Repurposing of a drug scaffold: Identification of novel sila analogues of rimonabant as potent antitubercular agents. Ramesh R; Shingare RD; Kumar V; Anand A; B S; Veeraraghavan S; Viswanadha S; Ummanni R; Gokhale R; Srinivasa Reddy D Eur J Med Chem; 2016 Oct; 122():723-730. PubMed ID: 27476117 [TBL] [Abstract][Full Text] [Related]
7. Comparative analyses of the proteins from Mycobacterium tuberculosis and human genomes: Identification of potential tuberculosis drug targets. Sridhar S; Dash P; Guruprasad K Gene; 2016 Mar; 579(1):69-74. PubMed ID: 26762852 [TBL] [Abstract][Full Text] [Related]
8. Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery. Kigondu EM; Wasuna A; Warner DF; Chibale K Bioorg Med Chem; 2014 Aug; 22(16):4453-61. PubMed ID: 24997576 [TBL] [Abstract][Full Text] [Related]
9. Discovery of antitubercular 2,4-diphenyl-1H-imidazoles from chemical library repositioning and rational design. Pieroni M; Wan B; Zuliani V; Franzblau SG; Costantino G; Rivara M Eur J Med Chem; 2015 Jul; 100():44-9. PubMed ID: 26071857 [TBL] [Abstract][Full Text] [Related]
10. Target prediction for an open access set of compounds active against Mycobacterium tuberculosis. Martínez-Jiménez F; Papadatos G; Yang L; Wallace IM; Kumar V; Pieper U; Sali A; Brown JR; Overington JP; Marti-Renom MA PLoS Comput Biol; 2013; 9(10):e1003253. PubMed ID: 24098102 [TBL] [Abstract][Full Text] [Related]
11. The Mycobacterium tuberculosis drugome and its polypharmacological implications. Kinnings SL; Xie L; Fung KH; Jackson RM; Xie L; Bourne PE PLoS Comput Biol; 2010 Nov; 6(11):e1000976. PubMed ID: 21079673 [TBL] [Abstract][Full Text] [Related]
14. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Fang Z; van der Merwe RG; Warren RM; Schubert WD; Gey van Pittius NC Tuberculosis (Edinb); 2015 Mar; 95(2):131-6. PubMed ID: 25578513 [TBL] [Abstract][Full Text] [Related]
15. A Repurposing Approach for Uncovering the Anti-Tubercular Activity of FDA-Approved Drugs with Potential Multi-Targeting Profiles. Battah B; Chemi G; Butini S; Campiani G; Brogi S; Delogu G; Gemma S Molecules; 2019 Nov; 24(23):. PubMed ID: 31795400 [TBL] [Abstract][Full Text] [Related]
16. Modeling the interactions of herbal drugs to beta-ketoacyl ACP synthase of Mycobacterium tuberculosis H37Rv. Ramesh KV; Purohit M; Mekhala K; Krishnan M; Wagle K; Deshmukh S J Biomol Struct Dyn; 2008 Apr; 25(5):481-93. PubMed ID: 18282003 [TBL] [Abstract][Full Text] [Related]
17. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis. Shen H; Wang F; Zhang Y; Huang Q; Xu S; Hu H; Yue J; Wang H FEBS J; 2009 Jan; 276(1):144-54. PubMed ID: 19032598 [TBL] [Abstract][Full Text] [Related]
18. A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing. Dwivedi M; Mukhopadhyay S; Yadav S; Dubey KD Comput Biol Med; 2022 Jul; 146():105607. PubMed ID: 35617724 [TBL] [Abstract][Full Text] [Related]
19. In silico analyses for the discovery of tuberculosis drug targets. Chung BK; Dick T; Lee DY J Antimicrob Chemother; 2013 Dec; 68(12):2701-9. PubMed ID: 23838951 [TBL] [Abstract][Full Text] [Related]
20. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. Gupta RK; Thakur TS; Desiraju GR; Tyagi JS J Med Chem; 2009 Oct; 52(20):6324-34. PubMed ID: 19827833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]