BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26429246)

  • 1. SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET.
    Lapuyade-Lahorgue J; Visvikis D; Pradier O; Cheze Le Rest C; Hatt M
    Med Phys; 2015 Oct; 42(10):5720-34. PubMed ID: 26429246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET.
    Belhassen S; Zaidi H
    Med Phys; 2010 Mar; 37(3):1309-24. PubMed ID: 20384268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications.
    Hatt M; Cheze le Rest C; Descourt P; Dekker A; De Ruysscher D; Oellers M; Lambin P; Pradier O; Visvikis D
    Int J Radiat Oncol Biol Phys; 2010 May; 77(1):301-8. PubMed ID: 20116934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.
    Hatt M; Cheze le Rest C; Turzo A; Roux C; Visvikis D
    IEEE Trans Med Imaging; 2009 Jun; 28(6):881-93. PubMed ID: 19150782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust fuzzy local information C-Means clustering algorithm.
    Krinidis S; Chatzis V
    IEEE Trans Image Process; 2010 May; 19(5):1328-37. PubMed ID: 20089475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Framework for Automated Segmentation and Labeling of Homogeneous Versus Heterogeneous Lung Tumors in [
    Soufi M; Kamali-Asl A; Geramifar P; Rahmim A
    Mol Imaging Biol; 2017 Jun; 19(3):456-468. PubMed ID: 27770402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PET functional volume delineation: a robustness and repeatability study.
    Hatt M; Cheze Le Rest C; Albarghach N; Pradier O; Visvikis D
    Eur J Nucl Med Mol Imaging; 2011 Apr; 38(4):663-72. PubMed ID: 21225425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain tissue segmentation using fuzzy clustering techniques.
    Sucharitha M; Geetha KP
    Technol Health Care; 2015; 23(5):571-80. PubMed ID: 26410118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic anatomy recognition in whole-body PET/CT images.
    Wang H; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Jan; 43(1):613. PubMed ID: 26745953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification.
    Lavanya M; Kannan PM
    Asian Pac J Cancer Prev; 2017 Dec; 18(12):3395-3399. PubMed ID: 29286609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease quantification on PET/CT images without explicit object delineation.
    Tong Y; Udupa JK; Odhner D; Wu C; Schuster SJ; Torigian DA
    Med Image Anal; 2019 Jan; 51():169-183. PubMed ID: 30453165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first MICCAI challenge on PET tumor segmentation.
    Hatt M; Laurent B; Ouahabi A; Fayad H; Tan S; Li L; Lu W; Jaouen V; Tauber C; Czakon J; Drapejkowski F; Dyrka W; Camarasu-Pop S; Cervenansky F; Girard P; Glatard T; Kain M; Yao Y; Barillot C; Kirov A; Visvikis D
    Med Image Anal; 2018 Feb; 44():177-195. PubMed ID: 29268169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the spline reconstruction technique for PET.
    Kastis GA; Kyriakopoulou D; Gaitanis A; Fernández Y; Hutton BF; Fokas AS
    Med Phys; 2014 Apr; 41(4):042501. PubMed ID: 24694154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated delineation of lung tumors in PET images based on monotonicity and a tumor-customized criterion.
    Ballangan C; Wang X; Fulham M; Eberl S; Yin Y; Feng D
    IEEE Trans Inf Technol Biomed; 2011 Sep; 15(5):691-702. PubMed ID: 21672678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined fuzzy logic and random walker algorithm for PET image tumor delineation.
    Soufi M; Kamali-Asl A; Geramifar P; Abdoli M; Rahmim A
    Nucl Med Commun; 2016 Feb; 37(2):171-81. PubMed ID: 26517069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: creation of an oncology database.
    Papadimitroulas P; Loudos G; Le Maitre A; Hatt M; Tixier F; Efthimiou N; Nikiforidis GC; Visvikis D; Kagadis GC
    Med Phys; 2013 Nov; 40(11):112506. PubMed ID: 24320465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generic and robust method for automatic segmentation of PET images using an active contour model.
    Zhuang M; Dierckx RA; Zaidi H
    Med Phys; 2016 Aug; 43(8):4483. PubMed ID: 27487865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automatic method for accurate volume delineation of heterogeneous tumors in PET.
    Hofheinz F; Langner J; Petr J; Beuthien-Baumann B; Steinbach J; Kotzerke J; van den Hoff J
    Med Phys; 2013 Aug; 40(8):082503. PubMed ID: 23927348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.
    Sun K; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Mar; 43(3):1487-500. PubMed ID: 26936732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.
    Giri MG; Cavedon C; Mazzarotto R; Ferdeghini M
    Med Phys; 2016 May; 43(5):2491. PubMed ID: 27147360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.