These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26429462)

  • 1. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators.
    Gyüre B; Márkus BG; Bernáth B; Murányi F; Simon F
    Rev Sci Instrum; 2015 Sep; 86(9):094702. PubMed ID: 26429462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly accurate measurement of resonator
    Gyüre-Garami B; Sági O; Márkus BG; Simon F
    Rev Sci Instrum; 2018 Nov; 89(11):113903. PubMed ID: 30501306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier-transform EPR at high-field/high-frequency (3.4 T/95 GHz) using broadband stochastic microwave excitation.
    Fuhs M; Prisner T; Möbius K
    J Magn Reson; 2001 Mar; 149(1):67-73. PubMed ID: 11273753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.
    Quddusi HM; Ramsey CM; Gonzalez-Pons JC; Henderson JJ; del Barco E; de Loubens G; Kent AD
    Rev Sci Instrum; 2008 Jul; 79(7):074703. PubMed ID: 18681725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.
    Merrer PH; Saleh K; Llopis O; Berneschi S; Cosi F; Conti GN
    Appl Opt; 2012 Jul; 51(20):4742-8. PubMed ID: 22781250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An energy-efficient readout circuit for resonant sensors based on ring-down measurement.
    Zeng Z; Pertijs MA; Karabacak DM
    Rev Sci Instrum; 2013 Feb; 84(2):025005. PubMed ID: 23464244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel multisample dielectric resonators for electron paramagnetic resonance spectroscopy.
    Golovina IS; Kolesnik SP; Geifman IN; Belous AG
    Rev Sci Instrum; 2010 Apr; 81(4):044702. PubMed ID: 20441359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New ceramic EPR resonators with high dielectric permittivity.
    Golovina I; Geifman I; Belous A
    J Magn Reson; 2008 Nov; 195(1):52-9. PubMed ID: 18815061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.
    Reijerse E; Lendzian F; Isaacson R; Lubitz W
    J Magn Reson; 2012 Jan; 214(1):237-43. PubMed ID: 22196894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive cooling circuits for charged particle traps using crystal resonators.
    Kaltenbacher T; Caspers F; Doser M; Kellerbauer A; Pribyl W
    Rev Sci Instrum; 2011 Nov; 82(11):114702. PubMed ID: 22128997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators.
    Iqbal F; Lee B
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance.
    Colton JS; Wienkes LR
    Rev Sci Instrum; 2009 Mar; 80(3):035106. PubMed ID: 19334951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable microwave resonators and oscillators using magnetostatic waves.
    Ishak WS; Kok-Wai C; Kunz WE; Miccoli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):396-405. PubMed ID: 18290166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators.
    Flory CA; Ko HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):824-9. PubMed ID: 18244234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the Q value of an acoustic resonator.
    Biwa T; Ueda Y; Nomura H; Mizutani U; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026601. PubMed ID: 16196729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.