These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26429480)

  • 1. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.
    Kim S; Son Y; Choi S; Ham S; Park C
    Rev Sci Instrum; 2015 Sep; 86(9):095107. PubMed ID: 26429480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and achilles tendon stiffness: implications for flexibility.
    Kawakami Y; Kanehisa H; Fukunaga T
    J Orthop Sports Phys Ther; 2008 May; 38(5):269-76. PubMed ID: 18448880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weakness in end-range plantar flexion after Achilles tendon repair.
    Mullaney MJ; McHugh MP; Tyler TF; Nicholas SJ; Lee SJ
    Am J Sports Med; 2006 Jul; 34(7):1120-5. PubMed ID: 16476917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow passive stretch and release characteristics of the calf muscles of older women with limited dorsiflexion range of motion.
    Gajdosik RL; Vander Linden DW; McNair PJ; Riggin TJ; Albertson JS; Mattick DJ; Wegley JC
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):398-406. PubMed ID: 15109761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 9. A new device for assessing ankle dorsiflexion motion: reliability and validity.
    Wilken J; Rao S; Estin M; Saltzman CL; Yack HJ
    J Orthop Sports Phys Ther; 2011 Apr; 41(4):274-80. PubMed ID: 21460462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between passive properties of the calf muscles and plantarflexion concentric isokinetic torque characteristics.
    Gajdosik RL
    Eur J Appl Physiol; 2002 Jul; 87(3):220-7. PubMed ID: 12111281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small amounts of involuntary muscle activity reduce passive joint range of motion.
    Diong J; Gandevia SC; Nguyen D; Foo Y; Kastre C; Andersson K; Butler JE; Héroux ME
    J Appl Physiol (1985); 2019 Jul; 127(1):229-234. PubMed ID: 31120813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP; Bohra ZA; Lukos JR; Kinnaird CR
    J Appl Physiol (1985); 2006 Jan; 100(1):163-70. PubMed ID: 16179395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a Torque-Range-of-Motion device for objective differentiation of diabetic from normal feet in adults.
    Trevino SG; Buford WL; Nakamura T; John Wright A; Patterson RM
    Foot Ankle Int; 2004 Aug; 25(8):561-7. PubMed ID: 15363378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ; Sawicki GS
    J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exoskeleton using controlled energy storage and release to aid ankle propulsion.
    Wiggin MB; Sawicki GS; Collins SH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975342. PubMed ID: 22275547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.