BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26429971)

  • 1. Molecular basis for the substrate specificity and catalytic mechanism of thymine-7-hydroxylase in fungi.
    Li W; Zhang T; Ding J
    Nucleic Acids Res; 2015 Nov; 43(20):10026-38. PubMed ID: 26429971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation.
    Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
    Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA
    Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uracil's uncoupling of the decarboxylation of alpha-ketoglutarate in the thymine 7-hydroxylase reaction of Neurospora crassa.
    Hsu CA; Saewert MD; Polsinelli LF; Abbott MT
    J Biol Chem; 1981 Jun; 256(12):6098-101. PubMed ID: 6453866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA.
    Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases.
    Li X; Beeson WT; Phillips CM; Marletta MA; Cate JH
    Structure; 2012 Jun; 20(6):1051-61. PubMed ID: 22578542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation.
    Hashimoto H; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Sep; 40(17):8276-84. PubMed ID: 22740654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-heme iron protein with heme tendencies: an investigation of the substrate specificity of thymine hydroxylase.
    Thornburg LD; Lai MT; Wishnok JS; Stubbe J
    Biochemistry; 1993 Dec; 32(50):14023-33. PubMed ID: 8268181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymine 7-hydroxylase from Neurospora crassa. Substrate specificity studies.
    Bankel L; Lindstedt G; Lindstedt S
    Biochim Biophys Acta; 1977 Apr; 481(2):431-7. PubMed ID: 139930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome.
    Bullard W; Lopes da Rosa-Spiegler J; Liu S; Wang Y; Sabatini R
    J Biol Chem; 2014 Jul; 289(29):20273-82. PubMed ID: 24891501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic study of thymine 7-hydroxylase from neurospora crassa.
    Holme E
    Biochemistry; 1975 Nov; 14(22):4999-5003. PubMed ID: 126696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity.
    Laurent CVFP; Sun P; Scheiblbrandner S; Csarman F; Cannazza P; Frommhagen M; van Berkel WJH; Oostenbrink C; Kabel MA; Ludwig R
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase.
    Xu S; Li W; Zhu J; Wang R; Li Z; Xu GL; Ding J
    Cell Res; 2013 Nov; 23(11):1296-309. PubMed ID: 23917530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate selectivity in starch polysaccharide monooxygenases.
    Vu VV; Hangasky JA; Detomasi TC; Henry SJW; Ngo ST; Span EA; Marletta MA
    J Biol Chem; 2019 Aug; 294(32):12157-12166. PubMed ID: 31235519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Function of TET Enzymes.
    Yin X; Xu Y
    Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase.
    Liu CK; Hsu CA; Abbott MT
    Arch Biochem Biophys; 1973 Nov; 159(1):180-7. PubMed ID: 4274083
    [No Abstract]   [Full Text] [Related]  

  • 17. TET1-Mediated Oxidation of 5-Formylcytosine (5fC) to 5-Carboxycytosine (5caC) in RNA.
    Basanta-Sanchez M; Wang R; Liu Z; Ye X; Li M; Shi X; Agris PF; Zhou Y; Huang Y; Sheng J
    Chembiochem; 2017 Jan; 18(1):72-76. PubMed ID: 27805801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.