BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26430114)

  • 1. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance.
    Cao Q; Han SJ; Tersoff J; Franklin AD; Zhu Y; Zhang Z; Tulevski GS; Tang J; Haensch W
    Science; 2015 Oct; 350(6256):68-72. PubMed ID: 26430114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube transistors scaled to a 40-nanometer footprint.
    Cao Q; Tersoff J; Farmer DB; Zhu Y; Han SJ
    Science; 2017 Jun; 356(6345):1369-1372. PubMed ID: 28663497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors.
    Cao Q; Han SJ; Penumatcha AV; Frank MM; Tulevski GS; Tersoff J; Haensch WE
    ACS Nano; 2015 Feb; 9(2):1936-44. PubMed ID: 25652208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-channel transistors constructed with solution-processed carbon nanotubes.
    Choi SJ; Bennett P; Takei K; Wang C; Lo CC; Javey A; Bokor J
    ACS Nano; 2013 Jan; 7(1):798-803. PubMed ID: 23259742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors.
    Franklin AD; Farmer DB; Haensch W
    ACS Nano; 2014 Jul; 8(7):7333-9. PubMed ID: 24999536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of unipolar single-walled carbon nanotube field effect transistors to ambipolar induced by polystyrene nanosphere assembly.
    Wei D; Zhang Y; Yang Y; Hasko DG; Chu D; Teo KB; Amaratunga GA; Milne WI
    ACS Nano; 2008 Dec; 2(12):2526-30. PubMed ID: 19206288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material.
    Xian X; Yan K; Zhou W; Jiao L; Wu Z; Liu Z
    Nanotechnology; 2009 Dec; 20(50):505204. PubMed ID: 19923654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.
    Byon HR; Choi HC
    J Am Chem Soc; 2006 Feb; 128(7):2188-9. PubMed ID: 16478153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.
    Otsuka K; Inoue T; Maeda E; Kometani R; Chiashi S; Maruyama S
    ACS Nano; 2017 Nov; 11(11):11497-11504. PubMed ID: 29112380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length scaling of carbon nanotube transistors.
    Franklin AD; Chen Z
    Nat Nanotechnol; 2010 Dec; 5(12):858-62. PubMed ID: 21102468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.
    Du Y; Liu H; Deng Y; Ye PD
    ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
    Zhou Z; Eres G; Jin R; Subedi A; Mandrus D; Kim EH
    Nanotechnology; 2009 Feb; 20(8):085709. PubMed ID: 19417470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced performance of short-channel carbon nanotube field-effect transistors due to gate-modulated electrical contacts.
    Cummings AW; Léonard F
    ACS Nano; 2012 May; 6(5):4494-9. PubMed ID: 22530701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes as schottky barrier transistors.
    Heinze S; Tersoff J; Martel R; Derycke V; Appenzeller J; Avouris P
    Phys Rev Lett; 2002 Sep; 89(10):106801. PubMed ID: 12225214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.
    Wang Y; Pillai SK; Chan-Park MB
    Small; 2013 Sep; 9(17):2960-9. PubMed ID: 23441038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterned single-walled carbon nanotube electrodes for use in high-performance transistors and inverters.
    Kang W; Kim NH; Lee DY; Chang ST; Cho JH
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9664-70. PubMed ID: 24915751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral scaling in carbon-nanotube field-effect transistors.
    Wind SJ; Appenzeller J; Avouris P
    Phys Rev Lett; 2003 Aug; 91(5):058301. PubMed ID: 12906636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.