These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26430122)

  • 1. Function of the nucleus accumbens in motor control during recovery after spinal cord injury.
    Sawada M; Kato K; Kunieda T; Mikuni N; Miyamoto S; Onoe H; Isa T; Nishimura Y
    Science; 2015 Oct; 350(6256):98-101. PubMed ID: 26430122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury.
    Nishimura Y; Onoe H; Morichika Y; Perfiliev S; Tsukada H; Isa T
    Science; 2007 Nov; 318(5853):1150-5. PubMed ID: 18006750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ventral Striatum is a Key Node for Functional Recovery of Finger Dexterity After Spinal Cord Injury in Monkeys.
    Suzuki M; Onoe K; Sawada M; Takahashi N; Higo N; Murata Y; Tsukada H; Isa T; Onoe H; Nishimura Y
    Cereb Cortex; 2020 May; 30(5):3259-3270. PubMed ID: 31813974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skilled digit movements in feline and primate--recovery after selective spinal cord lesions.
    Pettersson LG; Alstermark B; Blagovechtchenski E; Isa T; Sasaski S
    Acta Physiol (Oxf); 2007 Feb; 189(2):141-54. PubMed ID: 17250565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the nucleus accumbens in functional recovery from spinal cord injury.
    Sawada M; Nishimura Y
    Neurosci Res; 2021 Nov; 172():1-6. PubMed ID: 33895202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys.
    Murata Y; Higo N; Oishi T; Yamashita A; Matsuda K; Hayashi M; Yamane S
    J Neurophysiol; 2008 Feb; 99(2):773-86. PubMed ID: 18094104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural substrates for the motivational regulation of motor recovery after spinal-cord injury.
    Nishimura Y; Onoe H; Onoe K; Morichika Y; Tsukada H; Isa T
    PLoS One; 2011; 6(9):e24854. PubMed ID: 21969864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys.
    Nishimura Y; Isa T
    Exp Neurol; 2012 May; 235(1):152-61. PubMed ID: 21884698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory changes at the cerebral cortical level after spinal cord injury.
    Nishimura Y; Isa T
    Neuroscientist; 2009 Oct; 15(5):436-44. PubMed ID: 19826168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of rehabilitative training on recovery of hand motor function: a review of animal studies.
    Higo N
    Neurosci Res; 2014 Jan; 78():9-15. PubMed ID: 24080147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Reorganization of Motor Networks During Recovery from Partial Spinal Cord Injury in Monkeys.
    Chao ZC; Sawada M; Isa T; Nishimura Y
    Cereb Cortex; 2019 Jul; 29(7):3059-3073. PubMed ID: 30060105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuronal mechanism of functional recovery of dexterous finger movements after lesion of the corticospinal tract--studies in a non-human primate model].
    Nishimura Y; Isa T
    Brain Nerve; 2007 May; 59(5):511-20. PubMed ID: 17533977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity for recovery after partial spinal cord injury – hierarchical organization.
    Isa T; Nishimura Y
    Neurosci Res; 2014 Jan; 78():3-8. PubMed ID: 24512702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Brain mechanism for functional recovery of finger dexterity after spinal cord injury].
    Nishimura Y; Isa T
    Nihon Ronen Igakkai Zasshi; 2008 Sep; 45(5):462-9. PubMed ID: 19068547
    [No Abstract]   [Full Text] [Related]  

  • 15. Cuneate nucleus reorganization following cervical dorsal rhizotomy in the macaque monkey: its role in the recovery of manual dexterity.
    Darian-Smith C; Ciferri M
    J Comp Neurol; 2006 Oct; 498(4):552-65. PubMed ID: 16874805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat.
    Webb AA; Muir GD
    Behav Brain Res; 2005 Dec; 165(2):147-59. PubMed ID: 16157393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.
    Filli L; Zörner B; Weinmann O; Schwab ME
    Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progressive plastic changes in the hand representation of the primary motor cortex parallel incomplete recovery from a unilateral section of the corticospinal tract at cervical level in monkeys.
    Schmidlin E; Wannier T; Bloch J; Rouiller EM
    Brain Res; 2004 Aug; 1017(1-2):172-83. PubMed ID: 15261113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAA receptors in VTA mediate the morphine-induced release of ascorbic acid in rat nucleus accumbens.
    Sun JY; Yang JY; Wang F; Hou Y; Dong YX; Wu CF
    Brain Res; 2011 Jan; 1368():52-8. PubMed ID: 20965157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of early versus late rehabilitative training on manual dexterity after corticospinal tract lesion in macaque monkeys.
    Sugiyama Y; Higo N; Yoshino-Saito K; Murata Y; Nishimura Y; Oishi T; Isa T
    J Neurophysiol; 2013 Jun; 109(12):2853-65. PubMed ID: 23515793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.