BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26430157)

  • 1. The Mendelian disorders of the epigenetic machinery.
    Bjornsson HT
    Genome Res; 2015 Oct; 25(10):1473-81. PubMed ID: 26430157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects.
    Fahrner JA; Bjornsson HT
    Hum Mol Genet; 2019 Nov; 28(R2):R254-R264. PubMed ID: 31595951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormalities of the DNA methylation mark and its machinery: an emerging cause of neurologic dysfunction.
    Weissman J; Naidu S; Bjornsson HT
    Semin Neurol; 2014 Jul; 34(3):249-57. PubMed ID: 25192503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic factors in intellectual disability: the Rubinstein-Taybi syndrome as a paradigm of neurodevelopmental disorder with epigenetic origin.
    Lopez-Atalaya JP; Valor LM; Barco A
    Prog Mol Biol Transl Sci; 2014; 128():139-76. PubMed ID: 25410544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states.
    Fahrner JA; Bjornsson HT
    Annu Rev Genomics Hum Genet; 2014; 15():269-93. PubMed ID: 25184531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here?
    Harris JR; Gao CW; Britton JF; Applegate CD; Bjornsson HT; Fahrner JA
    Hum Genet; 2024 Apr; 143(4):607-624. PubMed ID: 36952035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms.
    Larizza L; Finelli P
    Clin Genet; 2019 Feb; 95(2):231-240. PubMed ID: 29672823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging the Mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation.
    Luperchio TR; Boukas L; Zhang L; Pilarowski G; Jiang J; Kalinousky A; Hansen KD; Bjornsson HT
    Elife; 2021 Aug; 10():. PubMed ID: 34463256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexpression patterns define epigenetic regulators associated with neurological dysfunction.
    Boukas L; Havrilla JM; Hickey PF; Quinlan AR; Bjornsson HT; Hansen KD
    Genome Res; 2019 Apr; 29(4):532-542. PubMed ID: 30858344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder.
    Squeo GM; Augello B; Massa V; Milani D; Colombo EA; Mazza T; Castellana S; Piccione M; Maitz S; Petracca A; Prontera P; Accadia M; Della Monica M; Di Giacomo MC; Melis D; Selicorni A; Giglio S; Fischetto R; Di Fede E; Malerba N; Russo M; Castori M; Gervasini C; Merla G
    J Med Genet; 2020 Nov; 57(11):760-768. PubMed ID: 32170002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics of cognition and behavior: insights from Mendelian disorders of epigenetic machinery.
    Ng R; Kalinousky A; Harris J
    J Neurodev Disord; 2023 May; 15(1):16. PubMed ID: 37245029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies.
    Urdinguio RG; Sanchez-Mut JV; Esteller M
    Lancet Neurol; 2009 Nov; 8(11):1056-72. PubMed ID: 19833297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern Recognition of Common Multiple Congenital Malformation Syndromes with Underlying Chromatinopathy.
    Kaur A; Chaudhry C; Kaur P; Daniel R; Srivastava P
    J Pediatr Genet; 2024 Mar; 13(1):6-14. PubMed ID: 38567171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and molecular overview of inherited disorders resulting from epigenomic dysregulation.
    De Sario A
    Eur J Med Genet; 2009; 52(6):363-72. PubMed ID: 19632366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical epigenetics: a primer for the practitioner.
    Aygun D; Bjornsson HT
    Dev Med Child Neurol; 2020 Feb; 62(2):192-200. PubMed ID: 31749156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetics and complex disease: from etiology to new therapeutics.
    Ptak C; Petronis A
    Annu Rev Pharmacol Toxicol; 2008; 48():257-76. PubMed ID: 17883328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic modifications in the nervous system and their impact upon cognitive impairments.
    Rudenko A; Tsai LH
    Neuropharmacology; 2014 May; 80():70-82. PubMed ID: 24495398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of epigenetic "readers, writers and erasers": Implications for developmental reprogramming and the epigenetic basis for health and disease.
    Treviño LS; Wang Q; Walker CL
    Prog Biophys Mol Biol; 2015 Jul; 118(1-2):8-13. PubMed ID: 25841987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The epigenome in neurological disorders: a new marker for understanding neuronal dysfunction].
    Kubota T; Hirasawa T; Miyake K
    Brain Nerve; 2014 May; 66(5):591-7. PubMed ID: 24807374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice.
    Panchenko PE; Voisin S; Jouin M; Jouneau L; Prézelin A; Lecoutre S; Breton C; Jammes H; Junien C; Gabory A
    Clin Epigenetics; 2016; 8():22. PubMed ID: 26925174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.