BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26430732)

  • 21. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies.
    Oliveras-Ferraros C; Vazquez-Martin A; Cufí S; Torres-Garcia VZ; Sauri-Nadal T; Barco SD; Lopez-Bonet E; Brunet J; Martin-Castillo B; Menendez JA
    Biochem Biophys Res Commun; 2011 Apr; 407(2):412-9. PubMed ID: 21402055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TIMP-1 overexpression does not affect sensitivity to HER2-targeting drugs in the HER2-gene-amplified SK-BR-3 human breast cancer cell line.
    Deng X; Fogh L; Lademann U; Jensen V; Stenvang J; Yang H; Brünner N; Schrohl AS
    Tumour Biol; 2013 Apr; 34(2):1161-70. PubMed ID: 23334956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs.
    Blancafort A; Giró-Perafita A; Oliveras G; Palomeras S; Turrado C; Campuzano Ò; Carrión-Salip D; Massaguer A; Brugada R; Palafox M; Gómez-Miragaya J; González-Suárez E; Puig T
    PLoS One; 2015; 10(6):e0131241. PubMed ID: 26107737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer.
    Sethunath V; Hu H; De Angelis C; Veeraraghavan J; Qin L; Wang N; Simon LM; Wang T; Fu X; Nardone A; Pereira R; Nanda S; Griffith OL; Tsimelzon A; Shaw C; Chamness GC; Reis-Filho JS; Weigelt B; Heiser LM; Hilsenbeck SG; Huang S; Rimawi MF; Gray JW; Osborne CK; Schiff R
    Mol Cancer Res; 2019 Nov; 17(11):2318-2330. PubMed ID: 31420371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective autophagy promotes the resistance of HER2-positive breast cancer cells to lapatinib.
    Chen S; Zhu X; Qiao H; Ye M; Lai X; Yu S; Ding L; Wen A; Zhang J
    Tumour Biol; 2016 Feb; 37(2):2321-31. PubMed ID: 26369543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modular anti-EGFR and anti-Her2 targeting of SK-BR-3 and BT474 breast cancer cell lines in the presence of ErbB receptor-specific growth factors.
    Diermeier-Daucher S; Breindl S; Buchholz S; Ortmann O; Brockhoff G
    Cytometry A; 2011 Sep; 79(9):684-93. PubMed ID: 21786419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells.
    Vazquez-Martin A; Colomer R; Brunet J; Menendez JA
    Int J Oncol; 2007 Oct; 31(4):769-76. PubMed ID: 17786307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mislocalization of p27 to the cytoplasm of breast cancer cells confers resistance to anti-HER2 targeted therapy.
    Zhao H; Faltermeier CM; Mendelsohn L; Porter PL; Clurman BE; Roberts JM
    Oncotarget; 2014 Dec; 5(24):12704-14. PubMed ID: 25587029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer.
    Sanz-Moreno A; Palomeras S; Pedersen K; Morancho B; Pascual T; Galván P; Benítez S; Gomez-Miragaya J; Ciscar M; Jimenez M; Pernas S; Petit A; Soler-Monsó MT; Viñas G; Alsaleem M; Rakha EA; Green AR; Santamaria PG; Mulder C; Lemeer S; Arribas J; Prat A; Puig T; Gonzalez-Suarez E
    Breast Cancer Res; 2021 Mar; 23(1):42. PubMed ID: 33785053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells.
    Zhang C; Duan X; Xu L; Ye J; Zhao J; Liu Y
    Breast Cancer Res Treat; 2012 Dec; 136(3):739-48. PubMed ID: 23117856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells.
    Yu T; Cho BJ; Choi EJ; Park JM; Kim DH; Kim IA
    Oncotarget; 2016 Nov; 7(48):79089-79100. PubMed ID: 27738326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interleukin-6 expression contributes to lapatinib resistance through maintenance of stemness property in HER2-positive breast cancer cells.
    Huang WC; Hung CM; Wei CT; Chen TM; Chien PH; Pan HL; Lin YM; Chen YJ
    Oncotarget; 2016 Sep; 7(38):62352-62363. PubMed ID: 27694691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of ERBB2 receptor by t-DARPP mediates trastuzumab resistance in human esophageal adenocarcinoma.
    Hong J; Katsha A; Lu P; Shyr Y; Belkhiri A; El-Rifai W
    Cancer Res; 2012 Sep; 72(17):4504-14. PubMed ID: 22745369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer.
    Scaltriti M; Rojo F; Ocaña A; Anido J; Guzman M; Cortes J; Di Cosimo S; Matias-Guiu X; Ramon y Cajal S; Arribas J; Baselga J
    J Natl Cancer Inst; 2007 Apr; 99(8):628-38. PubMed ID: 17440164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring mechanisms of acquired resistance to HER2 (human epidermal growth factor receptor 2)-targeted therapies in breast cancer.
    Creedon H; Byron A; Main J; Hayward L; Klinowska T; Brunton VG
    Biochem Soc Trans; 2014 Aug; 42(4):822-30. PubMed ID: 25109964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined effects of lapatinib and bortezomib in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and activity of bortezomib against lapatinib-resistant breast cancer cells.
    Ma C; Niu X; Luo J; Shao Z; Shen K
    Cancer Sci; 2010 Oct; 101(10):2220-6. PubMed ID: 20701607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lapatinib monotherapy in patients with HER2-overexpressing relapsed or refractory inflammatory breast cancer: final results and survival of the expanded HER2+ cohort in EGF103009, a phase II study.
    Kaufman B; Trudeau M; Awada A; Blackwell K; Bachelot T; Salazar V; DeSilvio M; Westlund R; Zaks T; Spector N; Johnston S
    Lancet Oncol; 2009 Jun; 10(6):581-8. PubMed ID: 19394894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MTDH mediates trastuzumab resistance in HER2 positive breast cancer by decreasing PTEN expression through an NFκB-dependent pathway.
    Du C; Yi X; Liu W; Han T; Liu Z; Ding Z; Zheng Z; Piao Y; Yuan J; Han Y; Xie M; Xie X
    BMC Cancer; 2014 Nov; 14():869. PubMed ID: 25417825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple molecular mechanisms underlying trastuzumab and lapatinib resistance in JIMT-1 breast cancer cells.
    Köninki K; Barok M; Tanner M; Staff S; Pitkänen J; Hemmilä P; Ilvesaro J; Isola J
    Cancer Lett; 2010 Aug; 294(2):211-9. PubMed ID: 20193978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EGFR over-expression and activation in high HER2, ER negative breast cancer cell line induces trastuzumab resistance.
    Dua R; Zhang J; Nhonthachit P; Penuel E; Petropoulos C; Parry G
    Breast Cancer Res Treat; 2010 Aug; 122(3):685-97. PubMed ID: 19859802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.