These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2643080)

  • 1. An improved method for photofootprinting yeast genes in vivo using Taq polymerase.
    Axelrod JD; Majors J
    Nucleic Acids Res; 1989 Jan; 17(1):171-83. PubMed ID: 2643080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic footprinting in mammalian cells with ultraviolet light.
    Becker MM; Wang Z; Grossmann G; Becherer KA
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5315-9. PubMed ID: 2748587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct sequence and footprint analysis of yeast DNA by primer extension.
    Huibregtse JM; Engelke DR
    Methods Enzymol; 1991; 194():550-62. PubMed ID: 2005808
    [No Abstract]   [Full Text] [Related]  

  • 4. Photofootprinting in vivo detects transcription-dependent changes in yeast TATA boxes.
    Selleck SB; Majors J
    Nature; 1987 Jan 8-14; 325(7000):173-7. PubMed ID: 3543694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taq DNA polymerase blockage at pyrimidine dimers.
    Wellinger RE; Thoma F
    Nucleic Acids Res; 1996 Apr; 24(8):1578-9. PubMed ID: 8628696
    [No Abstract]   [Full Text] [Related]  

  • 6. Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase.
    Ponti M; Forrow SM; Souhami RL; D'Incalci M; Hartley JA
    Nucleic Acids Res; 1991 Jun; 19(11):2929-33. PubMed ID: 2057351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple in vivo footprinting method to examine DNA-protein interactions over the yeast PYK UAS element.
    Dumitru I; McNeil JB
    Nucleic Acids Res; 1994 Apr; 22(8):1450-5. PubMed ID: 8190636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes.
    Tornaletti S; Pfeifer GP
    J Mol Biol; 1995 Jun; 249(4):714-28. PubMed ID: 7602584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1.
    Sebastian J; Sancar GB
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11251-5. PubMed ID: 1763039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sequence analysis of the mutational specificity of u.v. light in the SUP4-o gene of yeast.
    Kunz BA; Pierce MK; Mis JR; Giroux CN
    Mutagenesis; 1987 Nov; 2(6):445-53. PubMed ID: 2832698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR.
    Huang MM; Arnheim N; Goodman MF
    Nucleic Acids Res; 1992 Sep; 20(17):4567-73. PubMed ID: 1408758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo "photofootprint" changes at sequences between the yeast GAL1 upstream activating sequence and "TATA" element require activated GAL4 protein but not a functional TATA element.
    Selleck SB; Majors J
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5399-403. PubMed ID: 3041409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction.
    Pfeifer GP; Drouin R; Riggs AD; Holmquist GP
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1374-8. PubMed ID: 1996338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo.
    Suter B; Schnappauf G; Thoma F
    Nucleic Acids Res; 2000 Nov; 28(21):4083-9. PubMed ID: 11058103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.
    Angers M; Cloutier JF; Castonguay A; Drouin R
    Nucleic Acids Res; 2001 Aug; 29(16):E83. PubMed ID: 11504891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box.
    Aboussekhra A; Thoma F
    EMBO J; 1999 Jan; 18(2):433-43. PubMed ID: 9889199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footprinting with UV irradiation and LMPCR.
    Pfeifer GP; Tornaletti S
    Methods; 1997 Feb; 11(2):189-96. PubMed ID: 8993031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo and in vitro footprinting of nucleosomes and transcriptional activators using an infrared-fluorescence DNA sequencer.
    Morohashi N; Nakajima K; Kuwana S; Tachiwana H; Kurumizaka H; Shimizu M
    Biol Pharm Bull; 2008 Feb; 31(2):187-92. PubMed ID: 18239271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of DNA-binding proteins along the yeast genome by UV-induced DNA-protein crosslinking.
    Papatsenko DA; Priporova IV; Belikov SV; Karpov VL
    FEBS Lett; 1996 Feb; 381(1-2):103-5. PubMed ID: 8641413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA Polymerase-I-Dependent Transcription-coupled Nucleotide Excision Repair of UV-Induced DNA Lesions at Transcription Termination Sites, in Saccharomyces cerevisiae.
    Peyresaubes F; Zeledon C; Guintini L; Charton R; Muguet A; Conconi A
    Photochem Photobiol; 2017 Jan; 93(1):363-374. PubMed ID: 27935059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.