BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26431304)

  • 41. [Comparative study of deep lying drusen of the papilla with the scanning laser ophthalmoscope and fundus camera].
    Schön JK; Nasemann JE; Boergen KP
    Klin Monbl Augenheilkd; 1992 Mar; 200(3):175-7. PubMed ID: 1578875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy.
    Rasta SH; Manivannan A; Sharp PF
    J Biomed Opt; 2012 Nov; 17(11):116005. PubMed ID: 23117800
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Telemedicine screening of diabetic retinopathy using a hand-held fundus camera.
    Yogesan K; Constable IJ; Barry CJ; Eikelboom RH; McAllister IL; Tay-Kearney ML
    Telemed J; 2000; 6(2):219-23. PubMed ID: 10957734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative image analysis of macular drusen from fundus photographs and scanning laser ophthalmoscope images.
    Kirkpatrick JN; Spencer T; Manivannan A; Sharp PF; Forrester JV
    Eye (Lond); 1995; 9 ( Pt 1)():48-55. PubMed ID: 7713250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration.
    Schmitz-Valckenberg S; Bültmann S; Dreyhaupt J; Bindewald A; Holz FG; Rohrschneider K
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4470-6. PubMed ID: 15557456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration.
    Schmitz-Valckenberg S; Fleckenstein M; Göbel AP; Hohman TC; Holz FG
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):1-6. PubMed ID: 20688734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of age-related macular degeneration using a nonmydriatic digital camera and a standard film fundus camera.
    Klein R; Meuer SM; Moss SE; Klein BE; Neider MW; Reinke J
    Arch Ophthalmol; 2004 Nov; 122(11):1642-6. PubMed ID: 15534124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantification of the image obtained with a wide-field scanning ophthalmoscope.
    Oishi A; Hidaka J; Yoshimura N
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2424-31. PubMed ID: 24667862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral domain optical coherence tomography-determined morphologic predictors of age-related macular degeneration-associated geographic atrophy progression.
    Moussa K; Lee JY; Stinnett SS; Jaffe GJ
    Retina; 2013 Sep; 33(8):1590-9. PubMed ID: 23538573
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Autofluorescence imaging in age-related macular degeneration complicated by choroidal neovascularization: a prospective study.
    Vaclavik V; Vujosevic S; Dandekar SS; Bunce C; Peto T; Bird AC
    Ophthalmology; 2008 Feb; 115(2):342-6. PubMed ID: 17599415
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration.
    Ramsey DJ; Sunness JS; Malviya P; Applegate C; Hager GD; Handa JT
    Retina; 2014 Jul; 34(7):1296-307. PubMed ID: 24398699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colocalization error between the scanning laser ophthalmoscope infrared reflectance and optical coherence tomography images of the heidelberg spectralis.
    Vongkulsiri S; Suzuki M; Spaide RF
    Retina; 2015 Jun; 35(6):1211-5. PubMed ID: 25748282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combined Nonmydriatic Spectral-Domain Optical Coherence Tomography and Nonmydriatic Fundus Photography for the Detection of Age-Related Macular Degeneration Changes.
    Salti HI; Antonios RS; Haddad SS; Hamam RN; Bashshur ZF; Ghazi NG
    Ophthalmic Surg Lasers Imaging Retina; 2015 May; 46(5):531-7. PubMed ID: 26057756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis.
    Sarao V; Veritti D; Borrelli E; Sadda SVR; Poletti E; Lanzetta P
    BMC Ophthalmol; 2019 Nov; 19(1):231. PubMed ID: 31744471
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tomographic reconstruction of the retina using a confocal scanning laser ophthalmoscope.
    Vieira P; Manivannan A; Lim CS; Sharp P; Forrester JV
    Physiol Meas; 1999 Feb; 20(1):1-19. PubMed ID: 10374823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance measurements of an infrared digital scanning laser ophthalmoscope.
    Manivannan A; Sharp PF; Forrester JV
    Physiol Meas; 1994 Aug; 15(3):317-24. PubMed ID: 7994210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of confocal scanning laser ophthalmoscope design.
    LaRocca F; Dhalla AH; Kelly MP; Farsiu S; Izatt JA
    J Biomed Opt; 2013 Jul; 18(7):076015. PubMed ID: 23864013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive optics dioptric scanning ophthalmoscope with a wider field of view similar to those of normal ophthalmoscopes.
    Yamaguchi T; Mihashi T; Kitaguchi Y; Kanda H; Morimoto T; Fujikado T
    Opt Lett; 2012 Jul; 37(13):2496-8. PubMed ID: 22743433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Digital fundus imaging using a scanning laser ophthalmoscope.
    Manivannan A; Sharp PF; Phillips RP; Forrester JV
    Physiol Meas; 1993 Feb; 14(1):43-56. PubMed ID: 8477232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fundus photography without a fundus camera.
    Boldrey EE
    Arch Ophthalmol; 1976 Sep; 94(9):1616-7. PubMed ID: 962670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.