BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26431534)

  • 1. Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone.
    Li S; Quarto N; Senarath-Yapa K; Grey N; Bai X; Longaker MT
    PLoS One; 2015; 10(10):e0138059. PubMed ID: 26431534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones.
    Quarto N; Wan DC; Kwan MD; Panetta NJ; Li S; Longaker MT
    J Bone Miner Res; 2010 Jul; 25(7):1680-94. PubMed ID: 19929441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of FGF signaling mediates proliferative and osteogenic differences between neural crest derived frontal and mesoderm parietal derived bone.
    Li S; Quarto N; Longaker MT
    PLoS One; 2010 Nov; 5(11):e14033. PubMed ID: 21124973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm.
    Xu Y; Malladi P; Zhou D; Longaker MT
    Plast Reconstr Surg; 2007 Dec; 120(7):1783-1795. PubMed ID: 18090740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.
    Li S; Meyer NP; Quarto N; Longaker MT
    PLoS One; 2013; 8(3):e58610. PubMed ID: 23536803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different endogenous threshold levels of Fibroblast Growth Factor-ligands determine the healing potential of frontal and parietal bones.
    Behr B; Panetta NJ; Longaker MT; Quarto N
    Bone; 2010 Aug; 47(2):281-94. PubMed ID: 20472108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological Signatures of Dual Embryonic Origins in Mouse Skull Vault.
    Hu B; Wu T; Zhao Y; Xu G; Shen R; Chen G
    Cell Physiol Biochem; 2017; 43(6):2525-2534. PubMed ID: 29130970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Axin2 in calvarial morphogenesis and craniosynostosis.
    Yu HM; Jerchow B; Sheu TJ; Liu B; Costantini F; Puzas JE; Birchmeier W; Hsu W
    Development; 2005 Apr; 132(8):1995-2005. PubMed ID: 15790973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.
    Leucht P; Kim JB; Amasha R; James AW; Girod S; Helms JA
    Development; 2008 Sep; 135(17):2845-54. PubMed ID: 18653558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential FGF ligands and FGF receptors expression pattern in frontal and parietal calvarial bones.
    Quarto N; Behr B; Li S; Longaker MT
    Cells Tissues Organs; 2009; 190(3):158-69. PubMed ID: 19218784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional difference in microRNA regulation in the skull vault.
    Chen G; Yao Y; Xu G; Zhang X
    Dev Dyn; 2019 Oct; 248(10):1009-1019. PubMed ID: 31397024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault.
    Ishii M; Merrill AE; Chan YS; Gitelman I; Rice DP; Sucov HM; Maxson RE
    Development; 2003 Dec; 130(24):6131-42. PubMed ID: 14597577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development.
    Liao J; Huang Y; Wang Q; Chen S; Zhang C; Wang D; Lv Z; Zhang X; Wu M; Chen G
    Cell Mol Life Sci; 2022 Feb; 79(3):158. PubMed ID: 35220463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of embryonic origin on osteogenic potential and bone repair capacity of rat calvarial osteoblasts.
    Souza ATP; Lopes HB; Freitas GP; Ferraz EP; Oliveira FS; Almeida ALG; Weffort D; Beloti MM; Rosa AL
    J Bone Miner Metab; 2020 Jul; 38(4):481-490. PubMed ID: 32078052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue origins and interactions in the mammalian skull vault.
    Jiang X; Iseki S; Maxson RE; Sucov HM; Morriss-Kay GM
    Dev Biol; 2002 Jan; 241(1):106-16. PubMed ID: 11784098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones.
    Senarath-Yapa K; Li S; Meyer NP; Longaker MT; Quarto N
    Int J Mol Sci; 2013 Mar; 14(3):5978-97. PubMed ID: 23502464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone vs. fat: embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts.
    Wiren KM; Hashimoto JG; Semirale AA; Zhang XW
    Bone; 2011 Oct; 49(4):662-72. PubMed ID: 21704206
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Quarto N; Shailendra S; Meyer NP; Menon S; Renda A; Longaker MT
    Front Physiol; 2018; 9():1426. PubMed ID: 30374308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite spectrum of activity of canonical Wnt signaling in the osteogenic context of undifferentiated and differentiated mesenchymal cells: implications for tissue engineering.
    Quarto N; Behr B; Longaker MT
    Tissue Eng Part A; 2010 Oct; 16(10):3185-97. PubMed ID: 20590472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development.
    Maruyama T; Jiang M; Abbott A; Yu HI; Huang Q; Chrzanowska-Wodnicka M; Chen EI; Hsu W
    J Bone Miner Res; 2017 Sep; 32(9):1816-1828. PubMed ID: 28520221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.