These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26431614)
1. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects. Bannwarth MA; Grovermann C; Schreinemachers P; Ingwersen J; Lamers M; Berger T; Streck T J Environ Manage; 2016 Jan; 165():298-312. PubMed ID: 26431614 [TBL] [Abstract][Full Text] [Related]
2. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France). Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of water quality in an agricultural watershed as affected by almond pest management practices. Zhang X; Liu X; Luo Y; Zhang M Water Res; 2008 Aug; 42(14):3685-96. PubMed ID: 18672261 [TBL] [Abstract][Full Text] [Related]
4. Pesticide transport simulation in a tropical catchment by SWAT. Bannwarth MA; Sangchan W; Hugenschmidt C; Lamers M; Ingwersen J; Ziegler AD; Streck T Environ Pollut; 2014 Aug; 191():70-9. PubMed ID: 24811948 [TBL] [Abstract][Full Text] [Related]
5. Pesticide modelling for a small catchment using SWAT-2000. Kannan N; White SM; Worrall F; Whelan MJ J Environ Sci Health B; 2006; 41(7):1049-70. PubMed ID: 16923591 [TBL] [Abstract][Full Text] [Related]
6. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Luo Y; Zhang M Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876 [TBL] [Abstract][Full Text] [Related]
7. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Luo Y; Zhang X; Liu X; Ficklin D; Zhang M Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909 [TBL] [Abstract][Full Text] [Related]
8. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed. Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630 [TBL] [Abstract][Full Text] [Related]
9. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds. Winchell MF; Peranginangin N; Srinivasan R; Chen W Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759 [TBL] [Abstract][Full Text] [Related]
10. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios. Leitão S; Moreira-Santos M; Van den Brink PJ; Ribeiro R; José Cerejeira M; Sousa JP Ecotoxicol Environ Saf; 2014 May; 103():36-44. PubMed ID: 24562181 [TBL] [Abstract][Full Text] [Related]
11. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M; Heathman GC; Norton LD; Engel B J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256 [TBL] [Abstract][Full Text] [Related]
12. Effects of soil variability and weather conditions on pesticide leaching--a farm-level evaluation. van Alphen BJ; Stoorvogel JJ J Environ Qual; 2002; 31(3):797-805. PubMed ID: 12026082 [TBL] [Abstract][Full Text] [Related]
13. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Wang R; Yuan Y; Yen H; Grieneisen M; Arnold J; Wang D; Wang C; Zhang M Sci Total Environ; 2019 Jun; 669():512-526. PubMed ID: 30884273 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of pesticide residues in the autumn Chinese cabbage (Brassica chinensis L.) grown in open fields. Zhang ZY; Zhang CZ; Liu XJ; Hong XY Pest Manag Sci; 2006 Apr; 62(4):350-5. PubMed ID: 16506147 [TBL] [Abstract][Full Text] [Related]
15. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices. Queyrel W; Habets F; Blanchoud H; Ripoche D; Launay M Sci Total Environ; 2016 Jan; 542(Pt A):787-802. PubMed ID: 26556743 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift. Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099 [TBL] [Abstract][Full Text] [Related]
17. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview. Malone RW; Ahuja LR; Ma L; Wauchope RD; Ma Q; Rojas KW Pest Manag Sci; 2004 Mar; 60(3):205-21. PubMed ID: 15025234 [TBL] [Abstract][Full Text] [Related]
18. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture. Eason A; Tim US; Wang X Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665 [TBL] [Abstract][Full Text] [Related]
19. Simulating pesticide transport from a sloped tropical soil to an adjacent stream. Kahl G; Ingwersen J; Totrakool S; Pansombat K; Thavornyutikarn P; Streck T J Environ Qual; 2010; 39(1):353-64. PubMed ID: 20048323 [TBL] [Abstract][Full Text] [Related]
20. Micro-trench experiments on interflow and lateral pesticide transport in a sloped soil in northern Thailand. Kahl G; Ingwersen J; Nutniyom P; Totrakool S; Pansombat K; Thavornyutikarn P; Streck T J Environ Qual; 2007; 36(4):1205-16. PubMed ID: 17596630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]