BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 26431640)

  • 1. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.
    Means MM; Ahn C; Korol AR; Williams LD
    J Environ Manage; 2016 Jan; 165():133-139. PubMed ID: 26431640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance.
    Means MM; Ahn C; Noe GB
    Sci Total Environ; 2017 Feb; 579():1366-1378. PubMed ID: 27914638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.
    Lou Y; Pan Y; Gao C; Jiang M; Lu X; Xu YJ
    PLoS One; 2016; 11(4):e0153972. PubMed ID: 27097325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China.
    Ma WW; Wang YS; Li G; Wu JQ; Luo YZ; Chen GP
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3900-3906. PubMed ID: 30584715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil development and establishment of carbon-based properties in created freshwater marshes.
    Hossler K; Bouchard V
    Ecol Appl; 2010 Mar; 20(2):539-53. PubMed ID: 20405805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones.
    Zhang Q; Wang Z; Xia S; Zhang G; Li S; Yu D; Yu X
    Sci Total Environ; 2022 May; 822():153512. PubMed ID: 35101500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of different plant species on methane emissions from soil in a restored Swiss wetland.
    Bhullar GS; Edwards PJ; Olde Venterink H
    PLoS One; 2014; 9(2):e89588. PubMed ID: 24586894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China].
    Liu Y; Li XZ; Yan ZZ; Chen XZ; He YL; Guo WY; Sun PY
    Ying Yong Sheng Tai Xue Bao; 2013 Aug; 24(8):2129-34. PubMed ID: 24380329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands.
    Lin YF; Jing SR; Wang TW; Lee DY
    Environ Pollut; 2002; 119(3):413-20. PubMed ID: 12166674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.
    McLaughlin DL; Cohen MJ
    Ecol Appl; 2013 Oct; 23(7):1619-31. PubMed ID: 24261044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking carbon storage with land use dynamics in a coastal Ramsar wetland.
    Dar SA; Dar JA
    Sci Total Environ; 2024 Jul; 932():173078. PubMed ID: 38723968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon sequestration in two created riverine wetlands in the midwestern United States.
    Bernal B; Mitsch WJ
    J Environ Qual; 2013 Jul; 42(4):1236-44. PubMed ID: 24216375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate and plant controls on soil organic matter in coastal wetlands.
    Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB
    Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.
    Collins BS; Sharitz RR; Coughlin DP
    Bioresour Technol; 2005 May; 96(8):937-48. PubMed ID: 15627565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of biological invasions on coastal blue carbon: A global review and meta-analysis.
    Davidson IC; Cott GM; Devaney JL; Simkanin C
    Glob Chang Biol; 2018 Nov; 24(11):5218-5230. PubMed ID: 30270555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services.
    Liu Z; Fagherazzi S; He Q; Gourgue O; Bai J; Liu X; Miao C; Hu Z; Cui B
    Nat Commun; 2024 Apr; 15(1):3643. PubMed ID: 38684646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan wetland].
    Yan G; Ge ZM; Zhang LQ
    Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):85-91. PubMed ID: 24765846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland.
    Qi Q; Zhang D; Zhang M; Tong S; An Y; Wang X; Zhu G
    Sci Total Environ; 2021 Aug; 780():146630. PubMed ID: 34030303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant diversity effect on water quality in wetlands: a meta-analysis based on experimental systems.
    Brisson J; Rodriguez M; Martin CA; Proulx R
    Ecol Appl; 2020 Jun; 30(4):e02074. PubMed ID: 31965659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monocot and dicot types and species richness in mesocosm constructed wetlands on removal of pollutants from wastewater.
    Zhang CB; Liu WL; Wang J; Ge Y; Ge Y; Chang SX; Chang J
    Bioresour Technol; 2011 Nov; 102(22):10260-5. PubMed ID: 21937222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.