These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 26431642)
1. Evaluation of the stability of a nanoremediation strategy using barley plants. Gil-Díaz M; González A; Alonso J; Lobo MC J Environ Manage; 2016 Jan; 165():150-158. PubMed ID: 26431642 [TBL] [Abstract][Full Text] [Related]
2. A nanoremediation strategy for the recovery of an As-polluted soil. Gil-Díaz M; Diez-Pascual S; González A; Alonso J; Rodríguez-Valdés E; Gallego JR; Lobo MC Chemosphere; 2016 Apr; 149():137-45. PubMed ID: 26855217 [TBL] [Abstract][Full Text] [Related]
3. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Pinilla P; Lobo MC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1361-9. PubMed ID: 25072767 [TBL] [Abstract][Full Text] [Related]
4. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y; Fang Z; Kang Y; Tsang EP J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637 [TBL] [Abstract][Full Text] [Related]
5. Residual impact of aged nZVI on heavy metal-polluted soils. Fajardo C; Gil-Díaz M; Costa G; Alonso J; Guerrero AM; Nande M; Lobo MC; Martín M Sci Total Environ; 2015 Dec; 535():79-84. PubMed ID: 25863574 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193 [TBL] [Abstract][Full Text] [Related]
7. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Pei G; Zhu Y; Wen J; Pei Y; Li H Environ Pollut; 2020 Jan; 256():113407. PubMed ID: 31672374 [TBL] [Abstract][Full Text] [Related]
8. Viability of a nanoremediation process in single or multi-metal(loid) contaminated soils. Gil-Díaz M; Pinilla P; Alonso J; Lobo MC J Hazard Mater; 2017 Jan; 321():812-819. PubMed ID: 27720472 [TBL] [Abstract][Full Text] [Related]
9. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H; Fang Z; Tsang PE; Fang J; Zhao D Environ Pollut; 2016 Jul; 214():94-100. PubMed ID: 27064615 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Fajardo C; Sánchez-Fortún S; Costa G; Nande M; Botías P; García-Cantalejo J; Mengs G; Martín M Sci Total Environ; 2020 Mar; 706():136041. PubMed ID: 31855644 [TBL] [Abstract][Full Text] [Related]
11. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Aparicio JD; Lacalle RG; Artetxe U; Urionabarrenetxea E; Becerril JM; Polti MA; Garbisu C; Soto M Environ Res; 2021 Mar; 194():110666. PubMed ID: 33359700 [TBL] [Abstract][Full Text] [Related]
12. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M; Puschenreiter M; Komárek M Chemosphere; 2018 Jun; 200():217-226. PubMed ID: 29486361 [TBL] [Abstract][Full Text] [Related]
13. Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Lacalle RG; Garbisu C; Becerril JM Environ Sci Pollut Res Int; 2020 Sep; 27(25):31726-31736. PubMed ID: 32504423 [TBL] [Abstract][Full Text] [Related]
14. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Gallego JR; Lobo MC Sci Total Environ; 2017 Apr; 584-585():1324-1332. PubMed ID: 28190571 [TBL] [Abstract][Full Text] [Related]
15. Reducing As availability in calcareous soils using nanoscale zero valent iron. Azari P; Bostani AA Environ Sci Pollut Res Int; 2017 Sep; 24(25):20438-20445. PubMed ID: 28707247 [TBL] [Abstract][Full Text] [Related]
16. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Zhang R; Zhang N; Fang Z Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164 [TBL] [Abstract][Full Text] [Related]
17. Response of two barley cultivars to increasing concentrations of cadmium or chromium in soil during the growing period. González A; Gil-Díaz M; Lobo MC Biol Trace Elem Res; 2015 Feb; 163(1-2):235-43. PubMed ID: 25431296 [TBL] [Abstract][Full Text] [Related]
18. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Su H; Fang Z; Tsang PE; Zheng L; Cheng W; Fang J; Zhao D J Hazard Mater; 2016 Nov; 318():533-540. PubMed ID: 27469041 [TBL] [Abstract][Full Text] [Related]
19. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Vítková M; Rákosová S; Michálková Z; Komárek M J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579 [TBL] [Abstract][Full Text] [Related]
20. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Baragaño D; Alonso J; Gallego JR; Lobo MC; Gil-Díaz M Chemosphere; 2020 Jan; 238():124624. PubMed ID: 31472353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]