These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Nguyen NT; Du K; Akakpo JY; Umbaugh DS; Jaeschke H; Ramachandran A Toxicol Lett; 2021 Mar; 338():21-31. PubMed ID: 33290831 [TBL] [Abstract][Full Text] [Related]
6. 4-Methylpyrazole protects against acetaminophen hepatotoxicity in mice and in primary human hepatocytes. Akakpo JY; Ramachandran A; Kandel SE; Ni HM; Kumer SC; Rumack BH; Jaeschke H Hum Exp Toxicol; 2018 Dec; 37(12):1310-1322. PubMed ID: 29739258 [TBL] [Abstract][Full Text] [Related]
7. Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting p450 isoenzymes, not by inflammasome activation. Xie Y; Williams CD; McGill MR; Lebofsky M; Ramachandran A; Jaeschke H Toxicol Sci; 2013 Jan; 131(1):325-35. PubMed ID: 22986947 [TBL] [Abstract][Full Text] [Related]
8. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Du K; Williams CD; McGill MR; Xie Y; Farhood A; Vinken M; Jaeschke H Toxicol Appl Pharmacol; 2013 Dec; 273(3):484-91. PubMed ID: 24070586 [TBL] [Abstract][Full Text] [Related]
9. Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through c-jun-N-terminal kinase (JNK)-dependent and -independent signaling pathways. Saberi B; Ybanez MD; Johnson HS; Gaarde WA; Han D; Kaplowitz N Hepatology; 2014 Apr; 59(4):1543-1554. PubMed ID: 23873604 [TBL] [Abstract][Full Text] [Related]
10. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Bajt ML; Ramachandran A; Yan HM; Lebofsky M; Farhood A; Lemasters JJ; Jaeschke H Toxicol Sci; 2011 Aug; 122(2):598-605. PubMed ID: 21572097 [TBL] [Abstract][Full Text] [Related]
11. Comparative metabonomic analysis of hepatotoxicity induced by acetaminophen and its less toxic meta-isomer. Kyriakides M; Maitre L; Stamper BD; Mohar I; Kavanagh TJ; Foster J; Wilson ID; Holmes E; Nelson SD; Coen M Arch Toxicol; 2016 Dec; 90(12):3073-3085. PubMed ID: 26746206 [TBL] [Abstract][Full Text] [Related]
12. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Ramachandran A; Lebofsky M; Weinman SA; Jaeschke H Toxicol Appl Pharmacol; 2011 Mar; 251(3):226-33. PubMed ID: 21241727 [TBL] [Abstract][Full Text] [Related]
13. Use of a systems model of drug-induced liver injury (DILIsym(®)) to elucidate the mechanistic differences between acetaminophen and its less-toxic isomer, AMAP, in mice. Howell BA; Siler SQ; Watkins PB Toxicol Lett; 2014 Apr; 226(2):163-72. PubMed ID: 24560604 [TBL] [Abstract][Full Text] [Related]
14. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gunawan BK; Liu ZX; Han D; Hanawa N; Gaarde WA; Kaplowitz N Gastroenterology; 2006 Jul; 131(1):165-78. PubMed ID: 16831600 [TBL] [Abstract][Full Text] [Related]
15. Comparative cytotoxic effects of acetaminophen (N-acetyl-p-aminophenol), a non-hepatotoxic regioisomer acetyl-m-aminophenol and their postulated reactive hydroquinone and quinone metabolites in monolayer cultures of mouse hepatocytes. Holme JA; Hongslo JK; Bjørge C; Nelson SD Biochem Pharmacol; 1991 Aug; 42(5):1137-42. PubMed ID: 1872898 [TBL] [Abstract][Full Text] [Related]
16. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Xie Y; Ramachandran A; Breckenridge DG; Liles JT; Lebofsky M; Farhood A; Jaeschke H Toxicol Appl Pharmacol; 2015 Jul; 286(1):1-9. PubMed ID: 25818599 [TBL] [Abstract][Full Text] [Related]
17. The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction. Hwang JH; Kim YH; Noh JR; Gang GT; Kim KS; Chung HK; Tadi S; Yim YH; Shong M; Lee CH Arch Toxicol; 2015 Nov; 89(11):2159-66. PubMed ID: 25224400 [TBL] [Abstract][Full Text] [Related]
18. Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Mobasher MA; González-Rodriguez A; Santamaría B; Ramos S; Martín MÁ; Goya L; Rada P; Letzig L; James LP; Cuadrado A; Martín-Pérez J; Simpson KJ; Muntané J; Valverde AM Cell Death Dis; 2013 May; 4(5):e626. PubMed ID: 23661004 [TBL] [Abstract][Full Text] [Related]
19. Differential regulation of mitogen-activated protein kinase pathways by acetaminophen and its nonhepatotoxic regioisomer 3'-hydroxyacetanilide in TAMH cells. Stamper BD; Bammler TK; Beyer RP; Farin FM; Nelson SD Toxicol Sci; 2010 Jul; 116(1):164-73. PubMed ID: 20363829 [TBL] [Abstract][Full Text] [Related]
20. Seneciphylline, a main pyrrolizidine alkaloid in Gynura japonica, induces hepatotoxicity in mice and primary hepatocytes via activating mitochondria-mediated apoptosis. Wang W; Yang X; Chen Y; Ye X; Jiang K; Xiong A; Yang L; Wang Z J Appl Toxicol; 2020 Nov; 40(11):1534-1544. PubMed ID: 32618019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]