BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 26432193)

  • 1. A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor.
    Lebedev N; Griva I; Dressick WJ; Phelps J; Johnson JE; Meshcheriakova Y; Lomonossoff GP; Soto CM
    Biosens Bioelectron; 2016 Mar; 77():306-14. PubMed ID: 26432193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Gold Nanoparticle to Plasmonic Biosensors.
    Lee JH; Cho HY; Choi HK; Lee JY; Choi JW
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29997363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures.
    Sun M; Xie M; Jiang J; Qi Z; Wang L; Chao J
    Nano Lett; 2024 Jun; 24(22):6480-6487. PubMed ID: 38771966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly.
    Fontana J; Dressick WJ; Phelps J; Johnson JE; Rendell RW; Sampson T; Ratna BR; Soto CM
    Small; 2014 Aug; 10(15):3058-63. PubMed ID: 24733721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale assembly of geometrically diverse metal nanoparticles-based 3D plasmonic DNA nanostructures for SERS detection of PNK in cancer cells.
    Li X; Liu B; Liu L; Yuan H; Li Y; Zhou B; Sun J; Li C; Xue Q
    Talanta; 2024 Jan; 266(Pt 1):124958. PubMed ID: 37499360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Enhanced Raman Spectroscopy for DNA Biosensors-How Far Are We?
    Pyrak E; Krajczewski J; Kowalik A; Kudelski A; Jaworska A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Characterization of Perforated SERS Active Array for Particle Trapping and Sensitive Molecular Analysis.
    Rigó I; Veres M; Váczi T; Holczer E; Hakkel O; Deák A; Fürjes P
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31349554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Bioprinted Hepar-on-a-Chip Implanted in Graphene-Based Plasmonic Sensors.
    Wang Y; Ma D; Zhang Q; Qian W; Liang D; Shen J; Pan X; Wang C; Sheng E; Zhu D
    ACS Sens; 2024 Jun; 9(6):3423-3432. PubMed ID: 38803215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis.
    Kumar S; Park H; Cho H; Siddique RH; Narasimhan V; Yang D; Choo H
    Nat Commun; 2020 Jun; 11(1):2930. PubMed ID: 32523000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light.
    Hill RT; Mock JJ; Urzhumov Y; Sebba DS; Oldenburg SJ; Chen SY; Lazarides AA; Chilkoti A; Smith DR
    Nano Lett; 2010 Oct; 10(10):4150-4. PubMed ID: 20804206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering metallic nanostructures for plasmonics and nanophotonics.
    Lindquist NC; Nagpal P; McPeak KM; Norris DJ; Oh SH
    Rep Prog Phys; 2012 Mar; 75(3):036501. PubMed ID: 22790420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging induced Ag nanoparticle rearrangement under ambient atmosphere and consequences for nanoparticle-enhanced DNA biosensing.
    Peng HI; Krauss TD; Miller BL
    Anal Chem; 2010 Oct; 82(20):8664-70. PubMed ID: 20857925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-controlled polymorphism in virus-like particles.
    Sun J; DuFort C; Daniel MC; Murali A; Chen C; Gopinath K; Stein B; De M; Rotello VM; Holzenburg A; Kao CC; Dragnea B
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1354-9. PubMed ID: 17227841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles.
    Neettiyath A; Chung K; Liu W; Lee LP
    Nano Converg; 2024 Jun; 11(1):23. PubMed ID: 38918255
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Bury D; Morais CLM; Ashton KM; Dawson TP; Martin FL
    Biosensors (Basel); 2019 Mar; 9(2):. PubMed ID: 30934999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote optical switch for localized and selective control of gene interference.
    Lee SE; Liu GL; Kim F; Lee LP
    Nano Lett; 2009 Feb; 9(2):562-70. PubMed ID: 19128006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphysics Modeling of Plasmon-Enhanced All-Optical Helicity-Dependent Switching.
    Cheng F; Wang C; Xu Y; Ma W; Liu Y
    ACS Photonics; 2023 May; 10(5):1259-1267. PubMed ID: 37928963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplasmonic Approaches for Sensitive Detection and Molecular Characterization of Extracellular Vesicles.
    Rojalin T; Phong B; Koster HJ; Carney RP
    Front Chem; 2019; 7():279. PubMed ID: 31134179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of gold nanoparticles using turnip yellow mosaic virus as an in-solution SERS sensor.
    Nguyen HA; Jupin I; Decorse P; Lau-Truong S; Ammar S; Ha-Duong NT
    RSC Adv; 2019 Oct; 9(55):32296-32307. PubMed ID: 35530810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tobacco Mosaic Viral Nanoparticle Inhibited Osteoclastogenesis Through Inhibiting mTOR/AKT Signaling.
    Shan Z; Bi H; Suonan A; Gu Y; Zhou H; Xi K; Xiong R; Chen H; Chen L
    Int J Nanomedicine; 2020; 15():7143-7153. PubMed ID: 33061372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.