These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26432286)

  • 1. A technique for developing CAD geometry of long bones using clinical CT data.
    Davis ML; Vavalle NA; Stitzel JD; Gayzik FS
    Med Eng Phys; 2015 Nov; 37(11):1116-23. PubMed ID: 26432286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images.
    Pakdel A; Robert N; Fialkov J; Maloul A; Whyne C
    Phys Med Biol; 2012 Dec; 57(23):8099-116. PubMed ID: 23159920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.
    Maloul A; Fialkov J; Whyne C
    Ann Biomed Eng; 2011 Mar; 39(3):1092-100. PubMed ID: 21120697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography.
    Ward KA; Adams JE; Hangartner TN
    Calcif Tissue Int; 2005 Nov; 77(5):275-80. PubMed ID: 16307388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computed tomographic measurement of cortical bone geometry.
    Sumner DR; Olson CL; Freeman PM; Lobick JJ; Andriacchi TP
    J Biomech; 1989; 22(6-7):649-53. PubMed ID: 2808447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A NURBS-based technique for subject-specific construction of knee bone geometry.
    Au AG; Palathinkal D; Liggins AB; Raso VJ; Carey J; Lambert RG; Amirfazli A
    Comput Methods Programs Biomed; 2008 Oct; 92(1):20-34. PubMed ID: 18644314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision.
    Sievänen H; Koskue V; Rauhio A; Kannus P; Heinonen A; Vuori I
    J Bone Miner Res; 1998 May; 13(5):871-82. PubMed ID: 9610752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.
    Lalone EA; Willing RT; Shannon HL; King GJ; Johnson JA
    Med Eng Phys; 2015 Aug; 37(8):729-38. PubMed ID: 26037323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring rib cortical bone thickness and cross section from CT.
    Holcombe SA; Hwang E; Derstine BA; Wang SC
    Med Image Anal; 2018 Oct; 49():27-34. PubMed ID: 30031288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of quantitative computed-tomography-based strength indicators for the identification of low bone-strength individuals in a clinical environment.
    Varghese B; Short D; Hangartner T
    Bone; 2012 Jan; 50(1):357-63. PubMed ID: 22036909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions.
    Xu R; Kido S; Suga K; Hirano Y; Tachibana R; Muramatsu K; Chagawa K; Tanaka S
    Ann Nucl Med; 2014 Nov; 28(9):926-35. PubMed ID: 25107363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific finite element modeling of bones.
    Poelert S; Valstar E; Weinans H; Zadpoor AA
    Proc Inst Mech Eng H; 2013 Apr; 227(4):464-78. PubMed ID: 23637222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural consequences of endosteal metastatic lesions in long bones.
    Hipp JA; McBroom RJ; Cheal EJ; Hayes WC
    J Orthop Res; 1989; 7(6):828-37. PubMed ID: 2795323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing cortical bone cross-sectional geometry by peripheral QCT: comparison with bone histomorphometry.
    Kontulainen S; Liu D; Manske S; Jamieson M; Sievänen H; McKay H
    J Clin Densitom; 2007; 10(1):86-92. PubMed ID: 17289530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.
    Tang CY; Tsui CP; Tang YM; Wei L; Wong CT; Lam KW; Ip WY; Lu WW; Pang MY
    Biomed Mater Eng; 2014; 24(2):1469-84. PubMed ID: 24642974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of mechanical properties of trabecular and cortical bone.
    Ito M; Koga A; Nishida A; Shiraishi A; Saito M; Hayashi K
    Adv Exp Med Biol; 2001; 496():47-56. PubMed ID: 11783625
    [No Abstract]   [Full Text] [Related]  

  • 20. Precision of cortical bone reconstruction based on 3D CT scans.
    Wang J; Ye M; Liu Z; Wang C
    Comput Med Imaging Graph; 2009 Apr; 33(3):235-41. PubMed ID: 19217257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.