These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26432357)

  • 21. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Anatomy of the glottis and subglottis in the pediatric larynx].
    Eckel HE; Sprinzl GM; Sittel C; Koebke J; Damm M; Stennert E
    HNO; 2000 Jul; 48(7):501-7. PubMed ID: 10955227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation.
    Spencer M; Siegmund T; Mongeau L
    J Acoust Soc Am; 2008 Feb; 123(2):1089-103. PubMed ID: 18247910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of vocal fold plane in 3D CT images for diagnosis of vocal fold abnormalities.
    Hewavitharanage S; Gubbi J; Thyagarajan D; Lau K; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3105-8. PubMed ID: 26736949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw.
    Guzman M; Laukkanen AM; Krupa P; Horáček J; Švec JG; Geneid A
    J Voice; 2013 Jul; 27(4):523.e19-34. PubMed ID: 23683806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic resonance imaging of the vocal fold oscillations with sub-millisecond temporal resolution.
    Fischer J; Abels T; Özen AC; Echternach M; Richter B; Bock M
    Magn Reson Med; 2020 Feb; 83(2):403-411. PubMed ID: 31517398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Age-related development of the arrangement of connective tissue fibers in the lamina propria of the human vocal folds--scanning electron microscopic examination with digestion method].
    Yamashita K
    Nihon Jibiinkoka Gakkai Kaiho; 1997 May; 100(5):499-511. PubMed ID: 9184028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure distributions in a static physical model of the uniform glottis: entrance and exit coefficients.
    Fulcher LP; Scherer RC; Powell T
    J Acoust Soc Am; 2011 Mar; 129(3):1548-53. PubMed ID: 21428518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histomorphometric analysis of collagen and elastic fibres in the cranial and caudal fold of the porcine glottis.
    Lang A; Koch R; Rohn K; Gasse H
    Anat Histol Embryol; 2015 Jun; 44(3):186-99. PubMed ID: 24995486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2012 Sep; 132(3):1602-13. PubMed ID: 22978889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of high-pitched phonation using three-dimensional computed tomography.
    Hiramatsu H; Tokashiki R; Nakamura H; Motohashi R; Sakurai E; Nomoto M; Toyomura F; Suzuki M
    J Voice; 2012 Sep; 26(5):548-54. PubMed ID: 22209054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the medial surface of the vocal folds.
    Berry DA; Clark MJ; Montequin DW; Titze IR
    Ann Otol Rhinol Laryngol; 2001 May; 110(5 Pt 1):470-7. PubMed ID: 11372933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative histology and vibration of the vocal folds: implications for experimental studies in microlaryngeal surgery.
    Garrett CG; Coleman JR; Reinisch L
    Laryngoscope; 2000 May; 110(5 Pt 1):814-24. PubMed ID: 10807360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.