BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26432557)

  • 21. Improved high-temperature ethanol production from sweet sorghum juice using Zymomonas mobilis overexpressing groESL genes.
    Kaewchana A; Techaparin A; Boonchot N; Thanonkeo P; Klanrit P
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9419-9431. PubMed ID: 34787692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular identification and physiological characterization of Zymomonas mobilis strains from fuel-ethanol production plants in north-east Brazil.
    de Araújo LCA; de Cássia Dias Mendes T; Dos Santos BS; da Mota Silveira Filho V; de Souza Lima GM; de Araújo JM; Dos Santos Correia MT; de Oliveira MBM; Morais Júnior MA; da Silva MV
    Lett Appl Microbiol; 2018 Jul; 67(1):54-63. PubMed ID: 29603295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological regulation of the properties of alcohol dehydrogenase II (ADH II) of Zymomonas mobilis: NADH renders ADH II resistant to cyanide and aeration.
    Kalnenieks U; Galinina N; Toma MM
    Arch Microbiol; 2005 Sep; 183(6):450-6. PubMed ID: 16027951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The paradoxical cyanide-stimulated respiration of Zymomonas mobilis: cyanide sensitivity of alcohol dehydrogenase (ADH II).
    Kalnenieks U; Toma MM; Galinina N; Poole RK
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1739-1744. PubMed ID: 12855725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Research progress of ethanologenic Zymomonas mobilis].
    Lin YP; Zhang MQ; Chen BQ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):472-7. PubMed ID: 15989250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of iron-dependent alcohol dehydrogenase 2 from Zymomonas mobilis ZM4 with and without NAD+ cofactor.
    Moon JH; Lee HJ; Park SY; Song JM; Park MY; Park HM; Sun J; Park JH; Kim BY; Kim JS
    J Mol Biol; 2011 Apr; 407(3):413-24. PubMed ID: 21295587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism.
    Pentjuss A; Odzina I; Kostromins A; Fell DA; Stalidzans E; Kalnenieks U
    J Biotechnol; 2013 May; 165(1):1-10. PubMed ID: 23471074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL; Rao CV
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput sequencing reveals adaptation-induced mutations in pentose-fermenting strains of Zymomonas mobilis.
    Dunn KL; Rao CV
    Biotechnol Bioeng; 2015 Nov; 112(11):2228-40. PubMed ID: 25943255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen sulfide formation as well as ethanol production in different media by cysND- and/or cysIJ-inactivated mutant strains of Zymomonas mobilis ZM4.
    Tan T; Liu C; Liu L; Zhang K; Zou S; Hong J; Zhang M
    Bioprocess Biosyst Eng; 2013 Oct; 36(10):1363-73. PubMed ID: 23086550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of ethanol-responsive small RNAs in Zymomonas mobilis.
    Cho SH; Lei R; Henninger TD; Contreras LM
    Appl Environ Microbiol; 2014 Jul; 80(14):4189-98. PubMed ID: 24795378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.
    Shui ZX; Qin H; Wu B; Ruan ZY; Wang LS; Tan FR; Wang JL; Tang XY; Dai LC; Hu GQ; He MX
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5739-48. PubMed ID: 25935346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis.
    Golias H; Dumsday GJ; Stanley GA; Pamment NB
    J Biotechnol; 2002 Jun; 96(2):155-68. PubMed ID: 12039532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of a charge balanced genome-scale metabolic model to study the energy-uncoupled growth of Zymomonas mobilis ZM1.
    Motamedian E; Saeidi M; Shojaosadati SA
    Mol Biosyst; 2016 Apr; 12(4):1241-9. PubMed ID: 26883123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis.
    Tan F; Wu B; Dai L; Qin H; Shui Z; Wang J; Zhu Q; Hu G; He M
    Microb Cell Fact; 2016 Jan; 15():4. PubMed ID: 26758018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163.
    Kouvelis VN; Saunders E; Brettin TS; Bruce D; Detter C; Han C; Typas MA; Pappas KM
    J Bacteriol; 2009 Nov; 191(22):7140-1. PubMed ID: 19767433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of Zymomonas mobilis biofilm and planktonic cells and the proteomic responses.
    Todhanakasem T; Yodsanga S; Sowatad A; Kanokratana P; Thanonkeo P; Champreda V
    Biotechnol Bioeng; 2018 Jan; 115(1):70-81. PubMed ID: 28892134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of pyruvate decarboxylase gene in Zymomonas mobilis by recombineering through bacteriophage lambda red genes.
    Khandelwal R; Agrawal S; Singhi D; Srivastava P; Bisaria VS
    J Microbiol Methods; 2018 Aug; 151():111-117. PubMed ID: 29958909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability.
    Yi X; Gao Q; Bao J
    J Biotechnol; 2019 Sep; 303():1-7. PubMed ID: 31310781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of Acetaldehyde Production in
    Kalnenieks U; Balodite E; Strähler S; Strazdina I; Rex J; Pentjuss A; Fuchino K; Bruheim P; Rutkis R; Pappas KM; Poole RK; Sawodny O; Bettenbrock K
    Front Microbiol; 2019; 10():2533. PubMed ID: 31798541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.