These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26432587)

  • 21. Biohazard potential of putative Martian organisms during missions to Mars.
    Warmflash D; Larios-Sanz M; Jones J; Fox GE; McKay DS
    Aviat Space Environ Med; 2007 Apr; 78(4 Suppl):A79-88. PubMed ID: 17511302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Evaluation of the radiation risk of determinate effects from space radiation in a piloted mission to Mars].
    Petrov VM; Vlasov AG
    Aviakosm Ekolog Med; 2004; 38(4):37-44. PubMed ID: 15500168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.
    Michalski JR; Jean-PierreBibring ; Poulet F; Loizeau D; Mangold N; Dobrea EN; Bishop JL; Wray JJ; McKeown NK; Parente M; Hauber E; Altieri F; Carrozzo FG; Niles PB
    Astrobiology; 2010 Sep; 10(7):687-703. PubMed ID: 20950170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.
    Northum JD; Guetersloh SB; Braby LA; Ford JR
    Health Phys; 2015 Oct; 109(4):284-95. PubMed ID: 26313586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to Mars.
    Le Postollec A; Incerti S; Dobrijevic M; Desorgher L; Santin G; Moretto P; Vandenabeele-Trambouze O; Coussot G; Dartnell L; Nieminen P
    Astrobiology; 2009 Apr; 9(3):311-23. PubMed ID: 19368517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neutron environments on the Martian surface.
    Clowdsley MS; Wilson JW; Kim MH; Singleterry RC; Tripathi RK; Heinbockel JH; Badavi FF; Shinn JL
    Phys Med; 2001; 17 Suppl 1():94-6. PubMed ID: 11770546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Radiation risk to cosmonauts in a flight to Mars].
    Shafirkin AV; Grigor'ev IuG; Kolomenskiĭ AV
    Aviakosm Ekolog Med; 2004; 38(2):3-14. PubMed ID: 15233030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimates of radiation doses in space on the basis of current data.
    Foelsche T
    Life Sci Space Res; 1963; 1():48-94. PubMed ID: 12056428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel shielding materials for space and air travel.
    Vana N; Hajek M; Berger T; Fugger M; Hofmann P
    Radiat Prot Dosimetry; 2006; 120(1-4):405-9. PubMed ID: 16717109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection.
    Tauscher C; Schuerger AC; Nicholson WL
    Astrobiology; 2006 Aug; 6(4):592-605. PubMed ID: 16916285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission.
    Shavers MR; Cucinotta FA; Miller J; Zeitlin C; Heilbronn L; Wilson JW; Singleterry RC
    Phys Med; 2001; 17 Suppl 1():131-2. PubMed ID: 11770530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of active methods for shielding spacecraft from energetic space radiation.
    Townsend LW
    Phys Med; 2001; 17 Suppl 1():84-5. PubMed ID: 11770543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Space radiation transport properties of polyethylene-based composites.
    Kaul RK; Barghouty AF; Dahche HM
    Ann N Y Acad Sci; 2004 Nov; 1027():138-49. PubMed ID: 15644352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency analysis of the MARS2013 planning strategy.
    Hettrich S; Dinkelaker AN; Sejkora N; Pfeil I; Scornet Q; Moser L; Boyd A; Terlevic R; Luger U
    Astrobiology; 2014 May; 14(5):377-90. PubMed ID: 24766437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological and biomechanical considerations for a human Mars mission.
    Hawkey A
    J Br Interplanet Soc; 2005; 58(3-4):117-30. PubMed ID: 15852539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life sciences issues affecting space exploration.
    White RJ; Leonard JI; Leveton L; Gaiser K; Teeter R
    Microgravity Sci Technol; 1990 Dec; 3(3):173-9. PubMed ID: 11541483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of simulated space radiation on immunoassay components for life-detection experiments in planetary exploration missions.
    Derveni M; Hands A; Allen M; Sims MR; Cullen DC
    Astrobiology; 2012 Aug; 12(8):718-29. PubMed ID: 22897155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [COSPAR Colloquium (Second international seminar) "Radiation protection in a piloted mission to Mars"].
    Petrov VM
    Aviakosm Ekolog Med; 2004; 38(1):68-70. PubMed ID: 15108604
    [No Abstract]   [Full Text] [Related]  

  • 39. What happens to your brain on the way to Mars.
    Parihar VK; Allen B; Tran KK; Macaraeg TG; Chu EM; Kwok SF; Chmielewski NN; Craver BM; Baulch JE; Acharya MM; Cucinotta FA; Limoli CL
    Sci Adv; 2015 May; 1(4):. PubMed ID: 26180843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space-brain: The negative effects of space exposure on the central nervous system.
    Jandial R; Hoshide R; Waters JD; Limoli CL
    Surg Neurol Int; 2018; 9():9. PubMed ID: 29416906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.