These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 26432666)
1. Velocity of temperature and flowering time in wheat - assisting breeders to keep pace with climate change. Zheng B; Chenu K; Chapman SC Glob Chang Biol; 2016 Feb; 22(2):921-33. PubMed ID: 26432666 [TBL] [Abstract][Full Text] [Related]
2. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Zheng B; Chenu K; Fernanda Dreccer M; Chapman SC Glob Chang Biol; 2012 Sep; 18(9):2899-914. PubMed ID: 24501066 [TBL] [Abstract][Full Text] [Related]
3. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
4. Frost trends and their estimated impact on yield in the Australian wheatbelt. Zheng B; Chapman SC; Christopher JT; Frederiks TM; Chenu K J Exp Bot; 2015 Jun; 66(12):3611-23. PubMed ID: 25922479 [TBL] [Abstract][Full Text] [Related]
5. The shifting influence of future water and temperature stress on the optimal flowering period for wheat in Western Australia. Chen C; Wang B; Feng P; Xing H; Fletcher AL; Lawes RA Sci Total Environ; 2020 Oct; 737():139707. PubMed ID: 32516662 [TBL] [Abstract][Full Text] [Related]
6. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Duncan JM; Dash J; Atkinson PM Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864 [TBL] [Abstract][Full Text] [Related]
7. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. Zheng B; Biddulph B; Li D; Kuchel H; Chapman S J Exp Bot; 2013 Sep; 64(12):3747-61. PubMed ID: 23873997 [TBL] [Abstract][Full Text] [Related]
8. Climate change and the flowering time of annual crops. Craufurd PQ; Wheeler TR J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929 [TBL] [Abstract][Full Text] [Related]
9. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. García GA; Dreccer MF; Miralles DJ; Serrago RA Glob Chang Biol; 2015 Nov; 21(11):4153-64. PubMed ID: 26111197 [TBL] [Abstract][Full Text] [Related]
10. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Stratonovitch P; Semenov MA J Exp Bot; 2015 Jun; 66(12):3599-609. PubMed ID: 25750425 [TBL] [Abstract][Full Text] [Related]
11. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. Allard V; Veisz O; Kõszegi B; Rousset M; Le Gouis J; Martre P J Exp Bot; 2012 Jan; 63(2):847-57. PubMed ID: 21994169 [TBL] [Abstract][Full Text] [Related]
12. Will phenotypic plasticity affecting flowering phenology keep pace with climate change? Richardson BA; Chaney L; Shaw NL; Still SM Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159 [TBL] [Abstract][Full Text] [Related]
13. Climate change enhances stability of wheat-flowering-date. He Y; Xiong W; Hu P; Huang D; Feurtado JA; Zhang T; Hao C; DePauw R; Zheng B; Hoogenboom G; Dixon LE; Wang H; Challinor AJ Sci Total Environ; 2024 Mar; 917():170305. PubMed ID: 38278227 [TBL] [Abstract][Full Text] [Related]
14. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Satake A; Kawagoe T; Saburi Y; Chiba Y; Sakurai G; Kudoh H Nat Commun; 2013; 4():2303. PubMed ID: 23941973 [TBL] [Abstract][Full Text] [Related]
15. Managing the risk of extreme climate events in Australian major wheat production systems. Luo Q; Trethowan R; Tan DKY Int J Biometeorol; 2018 Sep; 62(9):1685-1694. PubMed ID: 29869183 [TBL] [Abstract][Full Text] [Related]
16. The shifting influence of drought and heat stress for crops in northeast Australia. Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643 [TBL] [Abstract][Full Text] [Related]
17. Projected impact of future climate on water-stress patterns across the Australian wheatbelt. Watson J; Zheng B; Chapman S; Chenu K J Exp Bot; 2017 Dec; 68(21-22):5907-5921. PubMed ID: 29186513 [TBL] [Abstract][Full Text] [Related]
19. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States. Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704 [TBL] [Abstract][Full Text] [Related]
20. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania. Juknys R; Velička R; Kanapickas A; Kriaučiūnienė Z; Masilionytė L; Vagusevičienė I; Pupalienė R; Klepeckas M; Sujetovienė G Int J Biometeorol; 2017 Oct; 61(10):1765-1775. PubMed ID: 28484838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]