BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26433030)

  • 1. Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides.
    Srivastava A; Balaji PV
    J Struct Biol; 2015 Dec; 192(3):376-391. PubMed ID: 26433030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size, orientation and organization of oligomers that nucleate amyloid fibrils: clues from MD simulations of pre-formed aggregates.
    Srivastava A; Balaji PV
    Biochim Biophys Acta; 2012 Aug; 1824(8):963-73. PubMed ID: 22609417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of sequence, topology and termini charge in determining the stability of the aggregates of GNNQQNY mutants: a molecular dynamics study.
    Srivastava A; Balaji PV
    PLoS One; 2014; 9(5):e96660. PubMed ID: 24817093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.
    Katyal N; Deep S
    Phys Chem Chem Phys; 2017 Jul; 19(29):19120-19138. PubMed ID: 28702592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of partially ordered oligomers of amyloidogenic hexapeptide (NFGAIL) in aqueous solution observed in molecular dynamics simulations.
    Wu C; Lei H; Duan Y
    Biophys J; 2004 Nov; 87(5):3000-9. PubMed ID: 15326028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Nasica-Labouze J; Meli M; Derreumaux P; Colombo G; Mousseau N
    PLoS Comput Biol; 2011 May; 7(5):e1002051. PubMed ID: 21625573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics.
    Berhanu WM; Masunov AE
    Biopolymers; 2012; 98(2):131-44. PubMed ID: 22020870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer.
    Berhanu WM; Masunov AE
    Biophys Chem; 2010 Jun; 149(1-2):12-21. PubMed ID: 20456856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent.
    Wu C; Lei H; Duan Y
    Biophys J; 2005 Apr; 88(4):2897-906. PubMed ID: 15653723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of ring-shaped Aβ₄₂ oligomers determined by conformational selection.
    Tran L; Basdevant N; Prévost C; Ha-Duong T
    Sci Rep; 2016 Feb; 6():21429. PubMed ID: 26868929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: antiparallel versus parallel association.
    Vitagliano L; Esposito L; Pedone C; De Simone A
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1036-41. PubMed ID: 18938138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-atom computer simulations of amyloid fibrils disaggregation.
    Wang J; Tan C; Chen HF; Luo R
    Biophys J; 2008 Dec; 95(11):5037-47. PubMed ID: 18757563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase.
    Matthes D; Gapsys V; Brennecke JT; de Groot BL
    Sci Rep; 2016 Sep; 6():33156. PubMed ID: 27616019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and structure of oligomers of the Alzheimer peptide Abeta16-22: from the dimer to the 32-mer.
    Röhrig UF; Laio A; Tantalo N; Parrinello M; Petronzio R
    Biophys J; 2006 Nov; 91(9):3217-29. PubMed ID: 16920832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical characterization of p53 core domain aggregates.
    Lima I; Navalkar A; Maji SK; Silva JL; de Oliveira GAP; Cino EA
    Biochem J; 2020 Jan; 477(1):111-120. PubMed ID: 31841126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors.
    Berhanu WM; Masunov AE
    J Biomol Struct Dyn; 2014; 32(10):1651-69. PubMed ID: 24028418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer.
    Berhanu WM; Masunov AE
    J Biomol Struct Dyn; 2015; 33(7):1399-411. PubMed ID: 25093402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.