These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26433089)

  • 1. Degradation and swelling issues of poly-(d,l-lactide)/β-tricalcium phosphate/calcium carbonate composites for bone replacement.
    Abert J; Amella A; Weigelt S; Fischer H
    J Mech Behav Biomed Mater; 2016 Feb; 54():82-92. PubMed ID: 26433089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.
    Zheng X; Zhou S; Yu X; Li X; Feng B; Qu S; Weng J
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):170-80. PubMed ID: 18161831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the material properties of a poly(D,L-lactide)/β-tricalcium phosphate composite on the processability by selective laser sintering.
    Gayer C; Abert J; Bullemer M; Grom S; Jauer L; Meiners W; Reinauer F; Vučak M; Wissenbach K; Poprawe R; Schleifenbaum JH; Fischer H
    J Mech Behav Biomed Mater; 2018 Nov; 87():267-278. PubMed ID: 30098516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.
    He F; Zhang J; Yang F; Zhu J; Tian X; Chen X
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique.
    Lindner M; Hoeges S; Meiners W; Wissenbach K; Smeets R; Telle R; Poprawe R; Fischer H
    J Biomed Mater Res A; 2011 Jun; 97(4):466-71. PubMed ID: 21495168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro change in mechanical strength of beta-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration.
    Kikuchi M; Koyama Y; Takakuda K; Miyairi H; Shirahama N; Tanaka J
    J Biomed Mater Res; 2002 Nov; 62(2):265-72. PubMed ID: 12209947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium phosphate/poly(D,L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect.
    van de Watering FCJ; van den Beucken JJJP; Walboomers XF; Jansen JA
    Clin Oral Implants Res; 2012 Feb; 23(2):151-159. PubMed ID: 21631594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH; Chen TM; Lin CP; Lee CJ
    Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of collagen/β-tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects.
    Tebyanian H; Norahan MH; Eyni H; Movahedin M; Mortazavi SJ; Karami A; Nourani MR; Baheiraei N
    J Appl Biomater Funct Mater; 2019; 17(1):2280800018820490. PubMed ID: 30832532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate.
    Schiller C; Rasche C; Wehmöller M; Beckmann F; Eufinger H; Epple M; Weihe S
    Biomaterials; 2004; 25(7-8):1239-47. PubMed ID: 14643598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.
    Hesaraki S; Safari M; Shokrgozar MA
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe-Mg metal phase.
    Swain SK; Gotman I; Unger R; Kirkpatrick CJ; Gutmanas EY
    J Mech Behav Biomed Mater; 2016 Jan; 53():434-444. PubMed ID: 26409234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of the Process of Remodeling of Hydroxyapatite/Poly-D/L-Lactide and Beta-Tricalcium Phosphate in a Loading Site.
    Akagi H; Ochi H; Soeta S; Kanno N; Yoshihara M; Okazaki K; Yogo T; Harada Y; Amasaki H; Hara Y
    Biomed Res Int; 2015; 2015():730105. PubMed ID: 26504825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro.
    Shu X; Feng J; Feng J; Huang X; Li L; Shi Q
    J Biomater Appl; 2017 Nov; 32(5):547-560. PubMed ID: 29113568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.