BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

910 related articles for article (PubMed ID: 26433483)

  • 1. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised learning assisted robust prediction of bioluminescent proteins.
    Nath A; Subbiah K
    Comput Biol Med; 2016 Jan; 68():27-36. PubMed ID: 26599828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Archunan G; Sowdhamini R
    Amino Acids; 2010 Aug; 39(3):777-83. PubMed ID: 20186553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Prediction and Characterization of CDK Inhibitors Using Optimal Class Distribution.
    Nath A; Karthikeyan S
    Interdiscip Sci; 2017 Jun; 9(2):292-303. PubMed ID: 26879961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer survival classification using integrated data sets and intermediate information.
    Kim S; Park T; Kon M
    Artif Intell Med; 2014 Sep; 62(1):23-31. PubMed ID: 24997860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroke Prediction with Machine Learning Methods among Older Chinese.
    Wu Y; Fang Y
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32178250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.
    Nandi S; Subramanian A; Sarkar RR
    Mol Biosyst; 2017 Jul; 13(8):1584-1596. PubMed ID: 28671706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets.
    Banerjee P; Dehnbostel FO; Preissner R
    Front Chem; 2018; 6():362. PubMed ID: 30271769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An active learning based classification strategy for the minority class problem: application to histopathology annotation.
    Doyle S; Monaco J; Feldman M; Tomaszewski J; Madabhushi A
    BMC Bioinformatics; 2011 Oct; 12():424. PubMed ID: 22034914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception without preconception: comparison between the human and machine learner in recognition of tissues from histological sections.
    Barui S; Sanyal P; Rajmohan KS; Malik A; Dudani S
    Sci Rep; 2022 Sep; 12(1):16420. PubMed ID: 36180472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing an optimal class distribution for enhancing prediction and feature characterization of plant virus-encoded RNA-silencing suppressors.
    Nath A; Subbiah K
    3 Biotech; 2016 Jun; 6(1):93. PubMed ID: 28330163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal machine learning methods for prediction of high-flow nasal cannula outcomes using image features from electrical impedance tomography.
    Yang L; Li Z; Dai M; Fu F; Möller K; Gao Y; Zhao Z
    Comput Methods Programs Biomed; 2023 Aug; 238():107613. PubMed ID: 37209577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines.
    Majid A; Ali S; Iqbal M; Kausar N
    Comput Methods Programs Biomed; 2014 Mar; 113(3):792-808. PubMed ID: 24472367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery.
    Thanh Noi P; Kappas M
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29271909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vicinal support vector classifier using supervised kernel-based clustering.
    Yang X; Cao A; Song Q; Schaefer G; Su Y
    Artif Intell Med; 2014 Mar; 60(3):189-96. PubMed ID: 24637294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Prediction of Lipocalin Proteins Using Artificial Intelligence Strategy.
    Zulfiqar H; Ahmed Z; Ma CY; Khan RS; Grace-Mercure BK; Yu XL; Zhang ZY
    Front Biosci (Landmark Ed); 2022 Mar; 27(3):84. PubMed ID: 35345316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.