BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 26433615)

  • 1. Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets.
    Prabhu D; Bezerra H; Kolluru C; Gharaibeh Y; Mehanna E; Wu H; Wilson D
    J Biomed Opt; 2019 Oct; 24(10):1-15. PubMed ID: 31586357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    Biomed Opt Express; 2017 Feb; 8(2):1203-1220. PubMed ID: 28271012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The data representativeness criterion: Predicting the performance of supervised classification based on data set similarity.
    Schat E; van de Schoot R; Kouw WM; Veen D; Mendrik AM
    PLoS One; 2020; 15(8):e0237009. PubMed ID: 32780738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quantification of 3D wound morphology by machine learning and optical coherence tomography in type 2 diabetes.
    Wang Y; Freeman A; Ajjan R; Del Galdo F; Tiganescu A
    Skin Health Dis; 2023 Jun; 3(3):e203. PubMed ID: 37275432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning framework for the quantification of experimental uveitis in murine OCT.
    Mellak Y; Achim A; Ward A; Nicholson L; Descombes X
    Biomed Opt Express; 2023 Jul; 14(7):3413-3432. PubMed ID: 37497491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence tomography for multicellular tumor spheroid category recognition and drug screening classification via multi-spatial-superficial-parameter and machine learning.
    Yan F; Mutembei B; Valerio T; Gunay G; Ha JH; Zhang Q; Wang C; Selvaraj Mercyshalinie ER; Alhajeri ZA; Zhang F; Dockery LE; Li X; Liu R; Dhanasekaran DN; Acar H; Chen WR; Tang Q
    Biomed Opt Express; 2024 Apr; 15(4):2014-2047. PubMed ID: 38633082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing cross-correlation as a method for microvessel imaging using clinical intravascular optical coherence tomography systems.
    Joseph S; Adnan A; Subhash HM; Leahy M; Adlam D
    Biomed Opt Express; 2015 Mar; 6(3):668-89. PubMed ID: 25798295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Self-Supervised Learning for Rare Diseases in OCT.
    Walston SL; Sato S; Ueda D
    JAMA Ophthalmol; 2024 Jun; ():. PubMed ID: 38842901
    [No Abstract]   [Full Text] [Related]  

  • 9. Enhancing Self-Supervised Learning for Rare Diseases in OCT-Reply.
    Gholami S; Scheppke L; Lee AY
    JAMA Ophthalmol; 2024 Jun; ():. PubMed ID: 38842855
    [No Abstract]   [Full Text] [Related]  

  • 10. Segmentation of anatomical layers and imaging artifacts in intravascular polarization sensitive optical coherence tomography using attending physician and boundary cardinality losses.
    Haft-Javaherian M; Villiger M; Otsuka K; Daemen J; Libby P; Golland P; Bouma BE
    Biomed Opt Express; 2024 Mar; 15(3):1719-1738. PubMed ID: 38495711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid automated lumen segmentation of coronary optical coherence tomography images followed by 3D reconstruction of coronary arteries.
    Wu W; Roby M; Banga A; Oguz UM; Gadamidi VK; Hasini Vasa C; Zhao S; Dasari VS; Thota AK; Tanweer S; Lee C; Kassab GS; Chatzizisis YS
    J Med Imaging (Bellingham); 2024 Jan; 11(1):014004. PubMed ID: 38173655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Coronary Optical Coherence Tomography Feature Extraction with Application to Three-Dimensional Reconstruction.
    Carpenter HJ; Ghayesh MH; Zander AC; Li J; Di Giovanni G; Psaltis PJ
    Tomography; 2022 May; 8(3):1307-1349. PubMed ID: 35645394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of coronary morphology using transmittance-based lumen intensity-enhanced intravascular optical coherence tomography images and applying a localized level-set-based active contour method.
    Joseph S; Adnan A; Adlam D
    J Med Imaging (Bellingham); 2016 Oct; 3(4):044001. PubMed ID: 27981064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning.
    Macedo MM; GuimarĂ£es WV; Galon MZ; Takimura CK; Lemos PA; Gutierrez MA
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():237-48. PubMed ID: 26433615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.
    Tsantis S; Kagadis GC; Katsanos K; Karnabatidis D; Bourantas G; Nikiforidis GC
    Med Phys; 2012 Jan; 39(1):503-13. PubMed ID: 22225321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic three-dimensional registration of intravascular optical coherence tomography images.
    Ughi GJ; Adriaenssens T; Larsson M; Dubois C; Sinnaeve PR; Coosemans M; Desmet W; D'hooge J
    J Biomed Opt; 2012 Feb; 17(2):026005. PubMed ID: 22463037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic bifurcation detection in coronary IVUS sequences.
    Alberti M; Balocco S; Gatta C; Ciompi F; Pujol O; Silva J; Carrillo X; Radeva P
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1022-31. PubMed ID: 22231146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementing Machine Learning in Radiology Practice and Research.
    Kohli M; Prevedello LM; Filice RW; Geis JR
    AJR Am J Roentgenol; 2017 Apr; 208(4):754-760. PubMed ID: 28125274
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.