BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 26433786)

  • 1. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.
    Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS
    Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol.
    Gupta PL; Choi HJ; Lee SM
    Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04.
    Ji MK; Kim HC; Sapireddy VR; Yun HS; Abou-Shanab RA; Choi J; Lee W; Timmes TC; Inamuddin ; Jeon BH
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2701-10. PubMed ID: 22569638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: Optimization of nutrient removal and biomass production.
    Markou G
    Bioresour Technol; 2015 Oct; 193():35-41. PubMed ID: 26117233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.
    Lee YR; Chen JJ
    Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.
    Ji Y; Hu W; Li X; Ma G; Song M; Pei H
    Bioresour Technol; 2014; 152():471-6. PubMed ID: 24333623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic pretreatment of Chlorella vulgaris for biogas production: Influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency.
    Mahdy A; Ballesteros M; González-Fernández C
    Bioresour Technol; 2016 Jan; 199():319-325. PubMed ID: 26338277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.
    Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM
    J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise treatment of undiluted raw piggery wastewater, using three microalgal species adapted to high ammonia.
    Lee SA; Lee N; Oh HM; Ahn CY
    Chemosphere; 2021 Jan; 263():127934. PubMed ID: 32828055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: Effect of ammonium concentration, carbon/nitrogen ratio and pH.
    Zheng H; Wu X; Zou G; Zhou T; Liu Y; Ruan R
    Bioresour Technol; 2019 Feb; 273():203-211. PubMed ID: 30447621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using chlorella vulgaris for nutrient removal from hydroponic wastewater: experimental investigation and economic assessment.
    Yousif YID; Mohamed ES; El-Gendy AS
    Water Sci Technol; 2022 Jun; 85(11):3240-3258. PubMed ID: 35704408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation.
    Ramsundar P; Guldhe A; Singh P; Bux F
    Bioresour Technol; 2017 Mar; 227():82-92. PubMed ID: 28013140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions.
    Ñañez KB; Rios Ramirez KD; Cordeiro de Oliveira OM; Reyes CY; Andrade Moreira ÍT
    Chemosphere; 2024 May; 356():141931. PubMed ID: 38614391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products.
    Melo RG; Andrade AF; Bezerra RP; Correia DS; Souza VC; Brasileiro-Vidal AC; Viana Marques DA; Porto ALF
    Chemosphere; 2018 Aug; 204():344-350. PubMed ID: 29674146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater.
    Cao L; Zhou T; Li Z; Wang J; Tang J; Ruan R; Liu Y
    Bioresour Technol; 2018 Sep; 263():10-16. PubMed ID: 29723844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.
    Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B
    Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH on biomass production and carbohydrate accumulation of Chlorella vulgaris JSC-6 under autotrophic, mixotrophic, and photoheterotrophic cultivation.
    Cheng CL; Lo YC; Huang KL; Nagarajan D; Chen CY; Lee DJ; Chang JS
    Bioresour Technol; 2022 May; 351():127021. PubMed ID: 35306130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.