These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2643390)

  • 1. Chemical modification of iron- and manganese-containing superoxide dismutases from Escherichia coli.
    Borders CL; Horton PJ; Beyer WF
    Arch Biochem Biophys; 1989 Jan; 268(1):74-80. PubMed ID: 2643390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that chemical modification of a positively charged residue at position 189 causes the loss of catalytic activity of iron-containing and manganese-containing superoxide dismutases.
    Chan VW; Bjerrum MJ; Borders CL
    Arch Biochem Biophys; 1990 May; 279(1):195-201. PubMed ID: 2186704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The positive charge at position 189 is essential for the catalytic activity of iron- and manganese-containing superoxide dismutases.
    Borders CL; Chain VW; Bjerrum MJ
    Free Radic Res Commun; 1991; 12-13 Pt 1():279-85. PubMed ID: 2071034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases.
    Borders CL; Fridovich I
    Arch Biochem Biophys; 1985 Sep; 241(2):472-6. PubMed ID: 4037799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostability of manganese- and iron-superoxide dismutases from Escherichia coli is determined by the characteristic position of a glutamine residue.
    Hunter T; Bannister JV; Hunter GJ
    Eur J Biochem; 2002 Nov; 269(21):5137-48. PubMed ID: 12392545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional differences between manganese and iron superoxide dismutases in Escherichia coli K-12.
    Hopkin KA; Papazian MA; Steinman HM
    J Biol Chem; 1992 Dec; 267(34):24253-8. PubMed ID: 1447175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of the bifunctional human serum pseudocholinesterase. Effect on the pseudocholinesterase and aryl acylamidase activities.
    Boopathy R; Balasubramanian AS
    Eur J Biochem; 1985 Sep; 151(2):351-60. PubMed ID: 2863142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of human arginine-143, lysine-143, and isoleucine-143 Cu,Zn superoxide dismutases by hydrogen peroxide: multiple mechanisms for inactivation.
    Horton PJ; Borders CL; Beyer WF
    Arch Biochem Biophys; 1989 Feb; 269(1):114-24. PubMed ID: 2492791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of rabbit skeletal muscle phosphorylase kinase with phenylglyoxal.
    Soman G; Graves DJ
    Arch Biochem Biophys; 1986 Jul; 248(1):341-52. PubMed ID: 3089165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essentiality of the active-site arginine residue for the normal catalytic activity of Cu,Zn superoxide dismutase.
    Borders CL; Saunders JE; Blech DM; Fridovich I
    Biochem J; 1985 Sep; 230(3):771-6. PubMed ID: 4062877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli.
    Beyer WF; Fridovich I
    Biochemistry; 1987 Mar; 26(5):1251-7. PubMed ID: 3552043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal.
    Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ
    Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Pseudomonas iron-superoxide dismutase by hydrogen peroxide.
    Yamakura F; Suzuki K
    Biochim Biophys Acta; 1986 Nov; 874(1):23-9. PubMed ID: 3768375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Escherichia coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide.
    Mukherjee JJ; Dekker EE
    Arch Biochem Biophys; 1992 Nov; 299(1):147-53. PubMed ID: 1444446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli.
    Hassan HM; Schrum LW
    FEMS Microbiol Rev; 1994 Aug; 14(4):315-23. PubMed ID: 7917419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The manganese superoxide dismutase of Escherichia coli K-12 associates with DNA.
    Steinman HM; Weinstein L; Brenowitz M
    J Biol Chem; 1994 Nov; 269(46):28629-34. PubMed ID: 7961811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartokinase-homoserine dehydrogenase I from Escherichia coli: pH and chemical modification studies of the kinase activity.
    Angeles TS; Smanik PA; Borders CL; Viola RE
    Biochemistry; 1989 Oct; 28(22):8771-7. PubMed ID: 2557908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leader peptidase from Escherichia coli: overexpression, characterization, and inactivation by modification of tryptophan residues 300 and 310 with N-bromosuccinimide.
    Kim YT; Muramatsu T; Takahashi K
    J Biochem; 1995 Mar; 117(3):535-44. PubMed ID: 7629019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of phenylglyoxal on Cu,Zn superoxide dismutase from the shark Prionace glauca.
    Galtieri A; Lania A; Polticelli F; Calabrese L
    Ital J Biochem; 1990; 39(3):207A-208A. PubMed ID: 2391237
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.