These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 26434109)
41. Two novel alkaloids from the South China Sea marine sponge Dysidea sp. Ren S; Ma W; Xu T; Lin X; Yin H; Yang B; Zhou XF; Yang XW; Long L; Lee KJ; Gao Q; Liu Y J Antibiot (Tokyo); 2010 Dec; 63(12):699-701. PubMed ID: 21063424 [TBL] [Abstract][Full Text] [Related]
42. Long-chain 2H-azirines with heterogeneous terminal halogenation from the marine sponge Dysidea fragilis. Skepper CK; Molinski TF J Org Chem; 2008 Apr; 73(7):2592-7. PubMed ID: 18321120 [TBL] [Abstract][Full Text] [Related]
43. Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp. that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Sadar MD; Williams DE; Mawji NR; Patrick BO; Wikanta T; Chasanah E; Irianto HE; Soest RV; Andersen RJ Org Lett; 2008 Nov; 10(21):4947-50. PubMed ID: 18834139 [TBL] [Abstract][Full Text] [Related]
44. Two new compounds from an Indonesian sponge Dysidea sp. Trianto A; de Voodg NJ; Tanaka J J Asian Nat Prod Res; 2014; 16(2):163-8. PubMed ID: 24251819 [TBL] [Abstract][Full Text] [Related]
45. New avarone and avarol derivatives from the marine sponge Dysidea cinerea. Hirsch S; Rudi A; Kashman Y; Loya Y J Nat Prod; 1991; 54(1):92-7. PubMed ID: 1710654 [TBL] [Abstract][Full Text] [Related]
46. A new bioactive derivative of avarol from the marine sponge Dysidea avara. Crispino A; de Giulio A; de Rosa S; Strazzullo G J Nat Prod; 1989; 52(3):646-8. PubMed ID: 2778453 [TBL] [Abstract][Full Text] [Related]
47. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity. Venkanna A; Siva B; Poornima B; Vadaparthi PR; Prasad KR; Reddy KA; Reddy GB; Babu KS Fitoterapia; 2014 Jun; 95():102-8. PubMed ID: 24631765 [TBL] [Abstract][Full Text] [Related]
48. Marasmane sesquiterpenes isolated from Russula foetens. Wang XN; Shen JH; Du JC; Liu JK J Antibiot (Tokyo); 2006 Oct; 59(10):669-72. PubMed ID: 17191684 [TBL] [Abstract][Full Text] [Related]
49. Sesquiterpene Quinones and Diterpenes from Smenospongia cerebriformis and Their Cytotoxic Activity. Huyen LT; Hang DT; Nhie NX; Tai BH; Anh HLT; Quang TH; Yen PH; Van Minh C; Van Dau N; Van Kiem P Nat Prod Commun; 2017 Apr; 12(4):477-478. PubMed ID: 30520574 [TBL] [Abstract][Full Text] [Related]
50. Drimane sesquiterpenoids from the fungus Aspergillus ustus isolated from the marine sponge Suberites domuncula. Liu H; Edrada-Ebel R; Ebel R; Wang Y; Schulz B; Draeger S; Müller WE; Wray V; Lin W; Proksch P J Nat Prod; 2009 Sep; 72(9):1585-8. PubMed ID: 19778087 [TBL] [Abstract][Full Text] [Related]
51. Metachromins U-W: cytotoxic merosesquiterpenoids from an Australian specimen of the sponge Thorecta reticulata. Ovenden SP; Nielson JL; Liptrot CH; Willis RH; Tapiolas DM; Wright AD; Motti CA J Nat Prod; 2011 May; 74(5):1335-8. PubMed ID: 21513294 [TBL] [Abstract][Full Text] [Related]
52. A new sesquiterpene lactone from Elephantopus tomentosus. Wang B; Mei WL; Zeng YB; Guo ZK; Liu GD; Dai HF J Asian Nat Prod Res; 2012; 14(7):700-3. PubMed ID: 22582752 [TBL] [Abstract][Full Text] [Related]
53. Euryspongins A-C, three new unique sesquiterpenes from a marine sponge Euryspongia sp. Yamazaki H; Nakazawa T; Sumilat DA; Takahashi O; Ukai K; Takahashi S; Namikoshi M Bioorg Med Chem Lett; 2013 Apr; 23(7):2151-4. PubMed ID: 23434422 [TBL] [Abstract][Full Text] [Related]
55. Suppression of RANKL-Induced Osteoclastogenesis by the Metabolites from the Marine Fungus Aspergillus flocculosus Isolated from a Sponge Stylissa sp. Shin HJ; Choi BK; Trinh PTH; Lee HS; Kang JS; Van TTT; Lee HS; Lee JS; Lee YJ; Lee J Mar Drugs; 2018 Jan; 16(1):. PubMed ID: 29304006 [TBL] [Abstract][Full Text] [Related]
56. Sesquiterpene derivatives from marine sponge Smenospongia cerebriformis and their anti-inflammatory activity. Kiem PV; Huyen LT; Hang DT; Nhiem NX; Tai BH; Anh HL; Cuong PV; Quang TH; Minh CV; Dau NV; Kim YA; Subedi L; Kim SY; Kim SH Bioorg Med Chem Lett; 2017 Apr; 27(7):1525-1529. PubMed ID: 28262525 [TBL] [Abstract][Full Text] [Related]
57. Liposomal integration method for assessing antioxidative activity of water insoluble compounds towards biologically relevant free radicals: example of avarol. Nakarada Đ; Pejin B; Tommonaro G; Mojović M J Liposome Res; 2020 Sep; 30(3):218-226. PubMed ID: 31146614 [TBL] [Abstract][Full Text] [Related]
58. Enantioselective total synthesis of dysidavarone A, a novel sesquiterpenoid quinone from the marine sponge Dysidea avara. Fukui Y; Narita K; Katoh T Chemistry; 2014 Feb; 20(9):2436-9. PubMed ID: 24482283 [TBL] [Abstract][Full Text] [Related]
59. Avinosol, a meroterpenoid-nucleoside conjugate with antiinvasion activity isolated from the marine sponge Dysidea sp. Diaz-Marrero AR; Austin P; Van Soest R; Matainaho T; Roskelley CD; Roberge M; Andersen RJ Org Lett; 2006 Aug; 8(17):3749-52. PubMed ID: 16898808 [TBL] [Abstract][Full Text] [Related]
60. Isolation of sesquiterpenoids from sponge Dysidea avara and chemical modification of avarol as potential antitumor agents. Shen YC; Lu CH; Chakraborty R; Kuo YH Nat Prod Res; 2003 Apr; 17(2):83-9. PubMed ID: 12713119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]