These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 26434533)
1. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533 [TBL] [Abstract][Full Text] [Related]
2. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
3. [Speciation transformation and behavior of arsenic in soils under anoxic conditions]. Wu X; Xu LY; Zhang XX; Song Y; Wang X; Jia YF Huan Jing Ke Xue; 2012 Jan; 33(1):273-9. PubMed ID: 22452222 [TBL] [Abstract][Full Text] [Related]
4. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities. Xu L; Zhao Z; Wang S; Pan R; Jia Y Water Res; 2011 Dec; 45(20):6781-8. PubMed ID: 22071325 [TBL] [Abstract][Full Text] [Related]
5. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations. Hashimoto Y; Kanke Y Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173 [TBL] [Abstract][Full Text] [Related]
6. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Burton ED; Johnston SG; Kocar BD Environ Sci Technol; 2014 Dec; 48(23):13660-7. PubMed ID: 25346449 [TBL] [Abstract][Full Text] [Related]
7. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction. Zhu M; Tu C; Hu X; Zhang H; Zhang L; Wei J; Li Y; Luo Y; Christie P Sci Total Environ; 2016 Nov; 569-570():1579-1586. PubMed ID: 27395078 [TBL] [Abstract][Full Text] [Related]
8. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation. de Mello JW; Talbott JL; Scott J; Roy WR; Stucki JW Environ Sci Pollut Res Int; 2007 Sep; 14(6):388-96. PubMed ID: 17993222 [TBL] [Abstract][Full Text] [Related]
9. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions. Wang S; He XY; Pan R; Xu L; Wang X; Jia Y Environ Sci Pollut Res Int; 2016 Apr; 23(8):7267-77. PubMed ID: 26676545 [TBL] [Abstract][Full Text] [Related]
10. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
11. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. Zhao FJ; Harris E; Yan J; Ma J; Wu L; Liu W; McGrath SP; Zhou J; Zhu YG Environ Sci Technol; 2013 Jul; 47(13):7147-54. PubMed ID: 23750559 [TBL] [Abstract][Full Text] [Related]
12. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864 [TBL] [Abstract][Full Text] [Related]
13. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
14. Coupling speciation and isotope dilution techniques to study arsenic mobilization in the environment. Hamon RE; Lombi E; Fortunati P; Nolan AL; McLaughlin MJ Environ Sci Technol; 2004 Mar; 38(6):1794-8. PubMed ID: 15074691 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic microbe mediated arsenic reduction and redistribution in coastal wetland soil. Luo T; Huang Z; Li X; Zhang Y Sci Total Environ; 2020 Jul; 727():138630. PubMed ID: 32315908 [TBL] [Abstract][Full Text] [Related]
16. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
17. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262 [TBL] [Abstract][Full Text] [Related]
18. Secondary arsenic minerals in the environment: a review. Drahota P; Filippi M Environ Int; 2009 Nov; 35(8):1243-55. PubMed ID: 19665230 [TBL] [Abstract][Full Text] [Related]
19. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601 [TBL] [Abstract][Full Text] [Related]
20. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Huang H; Jia Y; Sun GX; Zhu YG Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]