These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 26434533)
21. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils. Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583 [TBL] [Abstract][Full Text] [Related]
22. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546 [TBL] [Abstract][Full Text] [Related]
23. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Turpeinen R; Pantsar-Kallio M; Kairesalo T Sci Total Environ; 2002 Feb; 285(1-3):133-45. PubMed ID: 11874036 [TBL] [Abstract][Full Text] [Related]
24. Kinetics and mechanism of As2S3(am) dissolution under N2. Floroiu RM; Davis AP; Torrents A Environ Sci Technol; 2004 Feb; 38(4):1031-7. PubMed ID: 14998015 [TBL] [Abstract][Full Text] [Related]
25. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia. Kinsela AS; Collins RN; Waite TD Chemosphere; 2011 Feb; 82(6):879-87. PubMed ID: 21094969 [TBL] [Abstract][Full Text] [Related]
26. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Das S; Chou ML; Jean JS; Liu CC; Yang HJ Sci Total Environ; 2016 Jan; 542(Pt A):642-52. PubMed ID: 26546760 [TBL] [Abstract][Full Text] [Related]
27. Arsenic mitigation in paddy soils by using microbial fuel cells. Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474 [TBL] [Abstract][Full Text] [Related]
28. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Weber FA; Hofacker AF; Voegelin A; Kretzschmar R Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741 [TBL] [Abstract][Full Text] [Related]
29. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
30. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. Chen X; Zeng XC; Kawa YK; Wu W; Zhu X; Ullah Z; Wang Y Ecotoxicol Environ Saf; 2020 Feb; 189():109946. PubMed ID: 31759742 [TBL] [Abstract][Full Text] [Related]
31. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions. Hisatomi S; Guan L; Nakajima M; Fujii K; Nonaka M; Harada N J Hazard Mater; 2013 Nov; 262():25-30. PubMed ID: 24007995 [TBL] [Abstract][Full Text] [Related]
32. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study. Sarkar D; Datta R; Sharma S Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238 [TBL] [Abstract][Full Text] [Related]
33. Enhanced transformation of diphenylarsinic acid in soil under sulfate-reducing conditions. Guan L; Hisatomi S; Fujii K; Nonaka M; Harada N J Hazard Mater; 2012 Nov; 241-242():355-62. PubMed ID: 23069334 [TBL] [Abstract][Full Text] [Related]
34. Arsenic mobilization in a seawater inundated acid sulfate soil. Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899 [TBL] [Abstract][Full Text] [Related]
35. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789 [TBL] [Abstract][Full Text] [Related]
36. Interactions of arsenic and the dissolved substances derived from turf soils. Chen Z; Cai Y; Solo-Gabriele H; Snyder GH; Cisar JL Environ Sci Technol; 2006 Aug; 40(15):4659-65. PubMed ID: 16913121 [TBL] [Abstract][Full Text] [Related]
37. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
38. Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece. Vaxevanidou K; Giannikou S; Papassiopi N J Hazard Mater; 2012 Nov; 241-242():307-15. PubMed ID: 23062509 [TBL] [Abstract][Full Text] [Related]
39. Effect of nanomaterials on arsenic volatilization and extraction from flooded soils. Huang Q; Zhou S; Lin L; Huang Y; Li F; Song Z Environ Pollut; 2018 Aug; 239():118-128. PubMed ID: 29653303 [TBL] [Abstract][Full Text] [Related]
40. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]