These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 26434535)
1. CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Cabral Filho PE; Cardoso AL; Pereira MI; Ramos AP; Hallwass F; Castro MM; Geraldes CF; Santos BS; Pedroso de Lima MC; Pereira GA; Fontes A Biochim Biophys Acta; 2016 Jan; 1860(1 Pt A):28-35. PubMed ID: 26434535 [TBL] [Abstract][Full Text] [Related]
2. Characterization of CdTe/CdSe quantum dots-transferrin fluorescent probes for cellular labeling. Guan LY; Li YQ; Lin S; Zhang MZ; Chen J; Ma ZY; Zhao YD Anal Chim Acta; 2012 Sep; 741():86-92. PubMed ID: 22840708 [TBL] [Abstract][Full Text] [Related]
3. Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Zhang MZ; Yu RN; Chen J; Ma ZY; Zhao YD Nanotechnology; 2012 Dec; 23(48):485104. PubMed ID: 23138109 [TBL] [Abstract][Full Text] [Related]
4. Multimodal highly fluorescent-magnetic nanoplatform to target transferrin receptors in cancer cells. Cabral Filho PE; Cabrera MP; Cardoso ALC; Santana OA; Geraldes CFGC; Santos BS; Pedroso de Lima MC; Pereira GAL; Fontes A Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2788-2796. PubMed ID: 30251667 [TBL] [Abstract][Full Text] [Related]
5. CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans. Tenório DP; Andrade CG; Cabral Filho PE; Sabino CP; Kato IT; Carvalho LB; Alves S; Ribeiro MS; Fontes A; Santos BS J Photochem Photobiol B; 2015 Jan; 142():237-43. PubMed ID: 25559489 [TBL] [Abstract][Full Text] [Related]
6. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Yong KT; Qian J; Roy I; Lee HH; Bergey EJ; Tramposch KM; He S; Swihart MT; Maitra A; Prasad PN Nano Lett; 2007 Mar; 7(3):761-5. PubMed ID: 17288490 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the defect in a variant of HL-60 promyelocytic leukemia cells with reduced transferrin receptor expression. Ishiguro K; Ho PT; Sartorelli AC Somat Cell Mol Genet; 1992 Jan; 18(1):45-63. PubMed ID: 1546369 [TBL] [Abstract][Full Text] [Related]
8. A novel type of quantum dot-transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. Banerjee A; Grazon C; Pons T; Bhatia D; Valades-Cruz CA; Johannes L; Krishnan Y; Dubertret B Nanoscale; 2017 Oct; 9(40):15453-15460. PubMed ID: 28976518 [TBL] [Abstract][Full Text] [Related]
9. Solubilization and bioconjugation of QDs and their application in cell imaging. Wang HQ; Zhang HL; Li XQ; Wang JH; Huang ZL; Zhao YD J Biomed Mater Res A; 2008 Sep; 86(3):833-41. PubMed ID: 18041709 [TBL] [Abstract][Full Text] [Related]
10. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898 [TBL] [Abstract][Full Text] [Related]
11. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes]. Ling X; Deng DW; Zhong WY; Yu JS Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713 [TBL] [Abstract][Full Text] [Related]
12. Evaluating internalization and recycling of folate receptors in breast cancer cells using quantum dots. Monteiro CAP; Oliveira ADPR; Silva RC; Lima RRM; Souto FO; Baratti MO; Carvalho HF; Santos BS; Cabral Filho PE; Fontes A J Photochem Photobiol B; 2020 Aug; 209():111918. PubMed ID: 32531690 [TBL] [Abstract][Full Text] [Related]
13. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells. Jin T; Tiwari DK; Tanaka S; Inouye Y; Yoshizawa K; Watanabe TM Mol Biosyst; 2010 Nov; 6(11):2325-31. PubMed ID: 20835432 [TBL] [Abstract][Full Text] [Related]
14. Biofunctional quantum dots as fluorescence probe for cell-specific targeting. Ag D; Bongartz R; Dogan LE; Seleci M; Walter JG; Demirkol DO; Stahl F; Ozcelik S; Timur S; Scheper T Colloids Surf B Biointerfaces; 2014 Feb; 114():96-103. PubMed ID: 24176888 [TBL] [Abstract][Full Text] [Related]
15. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex. Kang T; Jiang M; Jiang D; Feng X; Yao J; Song Q; Chen H; Gao X; Chen J Mol Pharm; 2015 Aug; 12(8):2947-61. PubMed ID: 26149889 [TBL] [Abstract][Full Text] [Related]
16. Transferrin-conjugated nanodiamond as an intracellular transporter of chemotherapeutic drug and targeting therapy for cancer cells. Wang D; Li Y; Tian Z; Cao R; Yang B Ther Deliv; 2014 May; 5(5):511-24. PubMed ID: 24998271 [TBL] [Abstract][Full Text] [Related]
17. Programmable cellular retention of nanoparticles by replacing the synergistic anion of transferrin. Wu LC; Chu LW; Lo LW; Liao YC; Wang YC; Yang CS ACS Nano; 2013 Jan; 7(1):365-75. PubMed ID: 23194060 [TBL] [Abstract][Full Text] [Related]
18. Size-dependent stability of water-solubilized CdTe quantum dots and their uptake mechanism by live HeLa cells. Wang T; Jiang X ACS Appl Mater Interfaces; 2013 Feb; 5(4):1190-6. PubMed ID: 23387830 [TBL] [Abstract][Full Text] [Related]
19. Non-specific interactions of CdTe/Cds Quantum Dots with human blood mononuclear cells. Lira RB; Cavalcanti MB; Seabra MA; Silva DC; Amaral AJ; Santos BS; Fontes A Micron; 2012 Apr; 43(5):621-6. PubMed ID: 22197430 [TBL] [Abstract][Full Text] [Related]