These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26434545)

  • 1. IR-Driven Photocatalytic Water Splitting with WO2-NaxWO3 Hybrid Conductor Material.
    Cui G; Wang W; Ma M; Xie J; Shi X; Deng N; Xin J; Tang B
    Nano Lett; 2015 Nov; 15(11):7199-203. PubMed ID: 26434545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible-Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO
    Wang SL; Mak YL; Wang S; Chai J; Pan F; Foo ML; Chen W; Wu K; Xu GQ
    Langmuir; 2016 Dec; 32(49):13046-13053. PubMed ID: 27951691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Transparency and NIR-Shielding Properties of Nanocrystalline Sodium Tungsten Bronzes.
    Chao L; Sun C; Dou J; Li J; Liu J; Ma Y; Xiao L
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile construction of reduced graphene oxide supported three-dimensional polyaniline/WO
    Zhao X; You Y; Huang S; Cheng F; Chen P; Li H; Zhang Y
    Chemosphere; 2019 May; 222():781-788. PubMed ID: 30738320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melt Electrospun Reduced Tungsten Oxide /Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation.
    Chala TF; Wu CM; Chou MH; Guo ZL
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28955-28962. PubMed ID: 30052021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Achievements in Development of TiO
    Perović K; Dela Rosa FM; Kovačić M; Kušić H; Lavrenčič Štangar U; Fresno F; Dionysiou DD; Bozic AL
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765 nm.
    Wang YL; Nie T; Li YH; Wang XL; Zheng LR; Chen AP; Gong XQ; Yang HG
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7430-7434. PubMed ID: 28544453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen defect-induced localized surface plasmon resonance at the WO
    Wei W; Yao Y; Zhao Q; Xu Z; Wang Q; Zhang Z; Gao Y
    Nanoscale; 2019 Mar; 11(12):5535-5547. PubMed ID: 30860537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation.
    Cho J; Sheng A; Suwandaratne N; Wangoh L; Andrews JL; Zhang P; Piper LFJ; Watson DF; Banerjee S
    Acc Chem Res; 2019 Mar; 52(3):645-655. PubMed ID: 30543407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposites of tantalum-based pyrochlore and indium hydroxide showing high and stable photocatalytic activities for overall water splitting and carbon dioxide reduction.
    Hsieh MC; Wu GC; Liu WG; Goddard WA; Yang CM
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14216-20. PubMed ID: 25384922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes.
    Ueno K; Oshikiri T; Misawa H
    Chemphyschem; 2016 Jan; 17(2):199-215. PubMed ID: 26593450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting.
    Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM
    ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material Design for Photocatalytic Water Splitting from a Theoretical Perspective.
    Fu CF; Wu X; Yang J
    Adv Mater; 2018 Nov; 30(48):e1802106. PubMed ID: 30328641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor-Phase Photocatalytic Overall Water Splitting Using Hybrid Methylammonium Copper and Lead Perovskites.
    García T; García-Aboal R; Albero J; Atienzar P; García H
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched Alkylamine-Reduced Graphene Oxide Hybrids as a Dual Proton-Electron Conductor and Organic-Only Water-Splitting Photocatalyst.
    Karim MR; Rahman MM; Asiri AM; Hayami S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10829-10838. PubMed ID: 32043856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of photocatalytic "water splitting" on silicon nanowires.
    Liu D; Li L; Gao Y; Wang C; Jiang J; Xiong Y
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2980-5. PubMed ID: 25565663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-Transition Induced Conversion into a Photothermal Material: Quasi-Metallic WO
    Sun L; Li Z; Su R; Wang Y; Li Z; Du B; Sun Y; Guan P; Besenbacher F; Yu M
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10666-10671. PubMed ID: 29900645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.