BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26434573)

  • 21. A Comparative Analysis of Allergen Proteins between Plants and Animals Using Several Computational Tools and Chou's PseAAC Concept.
    Behbahani M; Rabiei P; Mohabatkar H
    Int Arch Allergy Immunol; 2020; 181(11):813-821. PubMed ID: 32906141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Brief Review on Software Tools in Generating Chou's Pseudo-factor Representations for All Types of Biological Sequences.
    Zhao W; Wang L; Zhang TX; Zhao ZN; Du PF
    Protein Pept Lett; 2018; 25(9):822-829. PubMed ID: 30182829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational prediction of antifungal peptides via Chou's PseAAC and SVM.
    Mousavizadegan M; Mohabatkar H
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850016. PubMed ID: 30105927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization.
    Nanni L; Lumini A
    Amino Acids; 2008 May; 34(4):653-60. PubMed ID: 18175047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC.
    Han GS; Yu ZG; Anh V
    J Theor Biol; 2014 Mar; 344():31-9. PubMed ID: 24316387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins.
    Hussain W; Khan YD; Rasool N; Khan SA; Chou KC
    J Theor Biol; 2019 May; 468():1-11. PubMed ID: 30768975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting antibacterial peptides by the concept of Chou's pseudo-amino acid composition and machine learning methods.
    Khosravian M; Faramarzi FK; Beigi MM; Behbahani M; Mohabatkar H
    Protein Pept Lett; 2013 Feb; 20(2):180-6. PubMed ID: 22894156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of metalloproteinase family based on the concept of Chou's pseudo amino acid composition using a machine learning approach.
    Mohammad Beigi M; Behjati M; Mohabatkar H
    J Struct Funct Genomics; 2011 Dec; 12(4):191-7. PubMed ID: 22143437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting lipase types by improved Chou's pseudo-amino acid composition.
    Zhang GY; Li HC; Gao JQ; Fang BS
    Protein Pept Lett; 2008; 15(10):1132-7. PubMed ID: 19075826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine.
    Mohabatkar H; Mohammad Beigi M; Esmaeili A
    J Theor Biol; 2011 Jul; 281(1):18-23. PubMed ID: 21536049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting subcellular localization of multi-label proteins by incorporating the sequence features into Chou's PseAAC.
    Javed F; Hayat M
    Genomics; 2019 Dec; 111(6):1325-1332. PubMed ID: 30196077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into chou's pseudo amino acid composition.
    Arif M; Hayat M; Jan Z
    J Theor Biol; 2018 Apr; 442():11-21. PubMed ID: 29337263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting protein folding rates using the concept of Chou's pseudo amino acid composition.
    Guo J; Rao N; Liu G; Yang Y; Wang G
    J Comput Chem; 2011 Jun; 32(8):1612-7. PubMed ID: 21328402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.
    Ahmad K; Waris M; Hayat M
    J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein remote homology detection by combining Chou's distance-pair pseudo amino acid composition and principal component analysis.
    Liu B; Chen J; Wang X
    Mol Genet Genomics; 2015 Oct; 290(5):1919-31. PubMed ID: 25896721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting protein structural class by incorporating patterns of over-represented k-mers into the general form of Chou's PseAAC.
    Qin YF; Wang CH; Yu XQ; Zhu J; Liu TG; Zheng XQ
    Protein Pept Lett; 2012 Apr; 19(4):388-97. PubMed ID: 22316305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    J Biomol Struct Dyn; 2016 Sep; 34(9):1946-61. PubMed ID: 26375780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. propy: a tool to generate various modes of Chou's PseAAC.
    Cao DS; Xu QS; Liang YZ
    Bioinformatics; 2013 Apr; 29(7):960-2. PubMed ID: 23426256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An alignment-free method to find similarity among protein sequences via the general form of Chou's pseudo amino acid composition.
    Gupta MK; Niyogi R; Misra M
    SAR QSAR Environ Res; 2013; 24(7):597-609. PubMed ID: 23710804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.
    Kong L; Zhang L; Lv J
    J Theor Biol; 2014 Mar; 344():12-8. PubMed ID: 24316044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.