These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26435267)

  • 1. Ultrasonically treated liquid interfaces for progress in cleaning and separation processes.
    Radziuk D; Möhwald H
    Phys Chem Chem Phys; 2016 Jan; 18(1):21-46. PubMed ID: 26435267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.
    Radziuk D; Möhwald H
    Chemphyschem; 2016 Apr; 17(7):931-53. PubMed ID: 26601628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields.
    Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S
    Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.
    Yusof NS; Babgi B; Alghamdi Y; Aksu M; Madhavan J; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():568-76. PubMed ID: 26142078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonochemical synthesis of nanomaterials.
    Xu H; Zeiger BW; Suslick KS
    Chem Soc Rev; 2013 Apr; 42(7):2555-67. PubMed ID: 23165883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of ultrasound in food and bioprocessing.
    Ashokkumar M
    Ultrason Sonochem; 2015 Jul; 25():17-23. PubMed ID: 25219872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation technology based on ultrasonic standing waves: A review.
    Luo X; Cao J; Gong H; Yan H; He L
    Ultrason Sonochem; 2018 Nov; 48():287-298. PubMed ID: 30080553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of ultrasound to enhance high-speed water jet effects.
    Foldyna J; Sitek L; Svehla B; Svehla S
    Ultrason Sonochem; 2004 May; 11(3-4):131-7. PubMed ID: 15081969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of suspensions and emulsions via ultrasonic standing waves - a review.
    Trujillo FJ; Juliano P; Barbosa-Cánovas G; Knoerzer K
    Ultrason Sonochem; 2014 Nov; 21(6):2151-64. PubMed ID: 24629579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic study of ultrasonic wettability enhancement.
    Sarasua JA; Rubio LR; Aranzabe E; Vilela JLV
    Ultrason Sonochem; 2021 Nov; 79():105768. PubMed ID: 34598103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of high-power ultrasound to enhance fluid/solid particle separation processes.
    Riera-Franco de Sarabia E ; Gallego-Juarez JA; Rodriguez-Corral G; Elvira-Segura L; Gonzalez-Gomez I
    Ultrasonics; 2000 Mar; 38(1-8):642-6. PubMed ID: 10829743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound irradiation combined with hydraulic cleaning on fouled polyethersulfone and polyvinylidene fluoride membranes.
    Wan MW; Reguyal F; Futalan C; Yang HL; Kan CC
    Environ Technol; 2013; 34(21-24):2929-37. PubMed ID: 24617052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption kinetics of 4-chlorophenol onto granular activated carbon in the presence of high frequency ultrasound.
    Hamdaoui O; Naffrechoux E
    Ultrason Sonochem; 2009 Jan; 16(1):15-22. PubMed ID: 18585074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.
    Tudela I; Sáez V; Esclapez MD; Díez-García MI; Bonete P; González-García J
    Ultrason Sonochem; 2014 May; 21(3):909-19. PubMed ID: 24355287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric study of acoustically-driven microbubble cavitations in a sonochemical reactor.
    Fu Z; Popov V
    Ultrason Sonochem; 2014 Jan; 21(1):415-27. PubMed ID: 23958355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic evaluation of thermodynamic parameters of liquids under high pressure.
    Kiełczyński P; Szalewski M; Balcerzak A; Wieja K; Rostocki AJ; Siegoczyński RM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1122-31. PubMed ID: 26067047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation.
    Abramov VO; Abramova AV; Bayazitov VM; Mullakaev MS; Marnosov AV; Ildiyakov AV
    Ultrason Sonochem; 2017 Mar; 35(Pt A):389-396. PubMed ID: 27789178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed observation of acoustic cavitation erosion in multibubble systems.
    Krefting D; Mettin R; Lauterborn W
    Ultrason Sonochem; 2004 May; 11(3-4):119-23. PubMed ID: 15081967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.